Projects per year
Personal profile
Ancillary activities
No ancillary activities
Ancillary activities are updated daily
specialisation
Genomics Data Analysis | Machine Learning | Statistical Inference | Bayesian Methods | Clinical Prediction Modeling
Research interests
- Analysis of high-dimensional data, mostly genomics
- Machine learning with small sample size
- Statistical inference (testing, confidence intervals, etc)
- Application and development of Bayesian methods for medical data
Data drives most of my statistical omics research: provide a generic, robust solution for a given study, and one likely solves similar problems for many studies. My research interests cover a wide spectrum, including high-dimensional data analysis (omics) and predictive modeling, incl. machine learning. My main fascination nowadays is omics-based clinical prediction and classification, by either statistical or machine learners. Here, I focus on developing methods to improve predictive performance and biomarker selection by structural use of complementary data (co-data), e.g. from external studies or data bases. Moreover, we develop tools to aid interpretation of ML, e.g. by providing inference for variable importance metrics. We directly apply and test such methods in a number of collaborative projects on cancer diagnostics and prognostics.
Activities
- Teaching: Biostatistics topics in several medical tracks (VU University) and High-dimensional data analysis in the Statistics and Data Science Master programme (Leiden University)
- Consult: Supporting Amsterdam UMC medical researchers, with a focus on analysis of omics data and machine learning
Collaborations and top research areas from the last five years
-
Exposome-NL
Mackenbach, J., Lakerveld, J., Beulens, J., van de Wiel, M., Abreu, T., Siddiqui, N. & den Braver, N.
1/01/2020 → 31/12/2029
Project: Research
-
-
An omics-based machine learning approach to predict diabetes progression: a RHAPSODY study
Slieker, R. C., Münch, M., Donnelly, L. A., Bouland, G. A., Dragan, I., Kuznetsov, D., Elders, P. J. M., Rutter, G. A., Ibberson, M., Pearson, E. R., ’t Hart, L. M., van de Wiel, M. A. & Beulens, J. W. J., May 2024, In: Diabetologia. 67, 5, p. 885-894 10 p.Research output: Contribution to journal › Article › Academic › peer-review
Open Access1 Citation (Scopus) -
TOSCCA: a framework for interpretation and testing of sparse canonical correlations
Senar, N., van de Wiel, M., Zwinderman, A. H. & Hof, M. H., 2024, In: Bioinformatics advances. 4, 1, vbae021.Research output: Contribution to journal › Article › Academic › peer-review
Open Access -
A BAYESIAN ACCELERATED FAILURE TIME MODEL FOR INTERVAL CENSORED THREE-STATE SCREENING OUTCOMES
Klausch, T., Akwiwu, E. U., VAN DE WIEL, M. A., Coupé, V. M. H. & Berkhof, J., 2023, In: Annals of Applied Statistics. 17, 2, p. 1285-1306 22 p.Research output: Contribution to journal › Article › Academic › peer-review
1 Citation (Scopus) -
ecpc: an R-package for generic co-data models for high-dimensional prediction
van Nee, M. M., Wessels, L. F. A. & van de Wiel, M. A., Dec 2023, In: BMC Bioinformatics. 24, 1, p. 172 172.Research output: Contribution to journal › Article › Academic › peer-review
Open Access -
External validation of an MR-based radiomic model predictive of locoregional control in oropharyngeal cancer
Bos, P., Martens, R., de Graaf, P., Jasperse, B., van Griethysen, J. J. M., Boellaard, R., Leemans, R. C., Beets-Tan, R. G. H., van de Wiel, M. A., van den Brekel, M. W. M., Castelijns, J. A., van Griethuysen, J. J. M. & Leemans, C. R., Apr 2023, In: European Journal of Radiology. 33, 4, p. 2850–2860 11 p.Research output: Contribution to journal › Article › Academic › peer-review
3 Citations (Scopus)
Datasets
-
Dynamics of methylated cell-free DNA in the urine of non-small cell lung cancer patients
Bach, S. (Creator), Wever, B. (Creator), van de Wiel, M. (Creator), Veltman, J. D. (Creator), Hashemi, S. (Creator), Kazemier, G. (Creator), Bahce, I. (Creator), Steenbergen, R. (Creator) & Veltman, J. D. (Creator), Taylor & Francis, 2022
DOI: 10.6084/m9.figshare.21286786, https://tandf.figshare.com/articles/dataset/Dynamics_of_methylated_cell-free_DNA_in_the_urine_of_non-small_cell_lung_cancer_patients/21286786
Dataset
-
Dynamics of methylated cell-free DNA in the urine of non-small cell lung cancer patients
Bach, S. (Creator), Wever, B. M. M. (Creator), van de Wiel, M. (Creator), Veltman, J. D. (Creator), Hashemi, S. M. S. (Creator), Kazemier, G. (Creator), Bahce, I. (Creator) & Steenbergen, R. D. M. (Creator), Taylor&Francis, 2022
DOI: 10.6084/m9.figshare.21286786, https://tandf.figshare.com/articles/dataset/Dynamics_of_methylated_cell-free_DNA_in_the_urine_of_non-small_cell_lung_cancer_patients/21286786
Dataset
-
Dynamics of methylated cell-free DNA in the urine of non-small cell lung cancer patients
Bach, S. (Creator), Wever, B. (Creator), van de Wiel, M. (Creator), Veltman, J. D. (Creator), Hashemi, S. (Creator), Kazemier, G. (Creator), Bahce, I. (Creator), Steenbergen, R. (Creator) & Veltman, J. D. (Creator), Taylor & Francis, 2022
DOI: 10.6084/m9.figshare.21286786.v1, https://tandf.figshare.com/articles/dataset/Dynamics_of_methylated_cell-free_DNA_in_the_urine_of_non-small_cell_lung_cancer_patients/21286786/1
Dataset
-
Dynamics of methylated cell-free DNA in the urine of non-small cell lung cancer patients
Bach, S. (Creator), Wever, B. M. M. (Creator), van de Wiel, M. (Creator), Veltman, J. D. (Creator), Hashemi, S. M. S. (Creator), Kazemier, G. (Creator), Bahce, I. (Creator) & Steenbergen, R. D. M. (Creator), Taylor&Francis, 2022
DOI: 10.6084/m9.figshare.21286786.v1, https://tandf.figshare.com/articles/dataset/Dynamics_of_methylated_cell-free_DNA_in_the_urine_of_non-small_cell_lung_cancer_patients/21286786/1
Dataset