A simple in silico approach to generate gene-expression profiles from subsets of cancer genomics data

Mohammed Khurshed, Remco J. Molenaar, Cornelis Jf van Noorden

Research output: Contribution to journalArticleAcademicpeer-review

3 Citations (Scopus)


In biomedical research, large-scale profiling of gene expression has become routine and offers a valuable means to evaluate changes in onset and progression of diseases, in particular cancer. An overwhelming amount of cancer genomics data has become publicly available, and the complexity of these data makes it a challenge to perform in silico data exploration, integration and analysis, in particular for scientists lacking a background in computational programming or informatics. Many web interface tools make these large datasets accessible but are limited to process large datasets. To accelerate the translation of genomic data into new insights, we provide a simple method to explore and select data from cancer genomic datasets to generate gene-expression profiles of subsets that are of specific genetic, biological or clinical interest.
Original languageEnglish
Pages (from-to)172-176
Issue number4
Publication statusPublished - 2019

Cite this