Abstract
Background: Microvascular dysfunction in the setting of ST-segment myocardial infarction (STEMI) is thought to be related to stress-related metabolic changes, including acute glucose intolerance. The aim of this study was to assess the relationship between admission glucose levels and microvascular function in non-diabetic STEMI patients. Methods: 92 consecutive patients with a first anterior-wall STEMI treated with primary percutaneous coronary intervention (PPCI) were enrolled. Blood glucose levels were determined immediately prior to PPCI. After successful PPCI, at 1‑week and 6‑month follow-up, Doppler flow was measured in culprit and reference coronary arteries to calculate coronary flow velocity reserve (CFVR), baseline (BMR) and hyperaemic (HMR) microvascular resistance. Results: The median admission glucose was 8.3 (7.2–9.6) mmol/l respectively 149.4 mg/dl [129.6–172.8] and was significantly associated with peak troponin T (standardised beta coefficient [std beta] = 0.281; p = 0.043). Multivariate analysis revealed that increasing glucose levels were significantly associated with a decrease in reference vessel CFVR (std beta = −0.313; p = 0.002), dictated by an increase in rest average peak velocity (APV) (std beta = 0.216; p = 0.033), due to a decreasing BMR (std beta = −0.225; p = 0.038) in the acute setting after PPCI. These associations disappeared at follow-up. These associations were not found for the infarct-related artery. Conclusion: Elevated admission glucose levels are associated with impaired microvascular function assessed directly after PPCI in first anterior-wall STEMI. This influence of glucose levels is an acute phenomenon and contributes to microvascular dysfunction through alterations in resting flow and baseline microvascular resistance.
Original language | English |
---|---|
Pages (from-to) | 161-170 |
Number of pages | 10 |
Journal | Netherlands heart journal |
Volume | 28 |
Issue number | 3 |
DOIs | |
Publication status | Published - 1 Mar 2020 |
Keywords
- ST-elevation myocardial infarction
- acute glucose intolerance
- microvascular dysfunction