Loss of arginine vasopressin- and vasoactive intestinal polypeptide-containing neurons and glial cells in the suprachiasmatic nucleus of individuals with type 2 diabetes

Rick Hogenboom, Martin J Kalsbeek, Nikita L Korpel, Paul de Goede, Marit Koenen, Ruud M Buijs, Johannes A Romijn, Dick F Swaab, Andries Kalsbeek, Chun-Xia Yi

Research output: Contribution to journalArticleAcademicpeer-review

34 Citations (Scopus)

Abstract

Aims/hypothesis: The central pacemaker of the mammalian biological timing system is located within the suprachiasmatic nucleus (SCN) in the anterior hypothalamus. Together with the peripheral clocks, this central brain clock ensures a timely, up-to-date and proper behaviour for an individual throughout the day–night cycle. A mismatch between the central and peripheral clocks results in a disturbance of daily rhythms in physiology and behaviour. It is known that the number of rhythmically expressed genes is reduced in peripheral tissue of individuals with type 2 diabetes mellitus. However, it is not known whether the central SCN clock is also affected in the pathogenesis of type 2 diabetes. In the current study, we compared the profiles of the SCN neurons and glial cells between type 2 diabetic and control individuals. Methods: We collected post-mortem hypothalamic tissues from 28 type 2 diabetic individuals and 12 non-diabetic control individuals. We performed immunohistochemical analysis for three SCN neuropeptides, arginine vasopressin (AVP), vasoactive intestinal polypeptide (VIP) and neurotensin (NT), and for two proteins expressed in glial cells, ionised calcium-binding adapter molecule 1 (IBA1, a marker of microglia) and glial fibrillary acidic protein (GFAP, a marker of astroglial cells). Results: The numbers of AVP immunoreactive (AVP-ir) and VIP-ir neurons and GFAP-ir astroglial cells in the SCN of type 2 diabetic individuals were significantly decreased compared with the numbers in the SCN of the control individuals. In addition, the relative intensity of AVP immunoreactivity was reduced in the individuals with type 2 diabetes. The number of NT-ir neurons and IBA1-ir microglial cells in the SCN was similar in the two groups. Conclusions/interpretation: Our data show that type 2 diabetes differentially affects the numbers of AVP- and VIP-expressing neurons and GFAP-ir astroglial cells in the SCN, each of which could affect the daily rhythmicity of the SCN biological clock machinery. Therefore, for effectively treating type 2 diabetes, lifestyle changes and/or medication to normalise central biological clock functioning might be helpful.
Original languageEnglish
Pages (from-to)2088-2093
JournalDiabetologia
Volume62
Issue number11
Early online date20 Jul 2019
DOIs
Publication statusPublished - Nov 2019

Cite this