BCL-XL is crucial for progression through the adenoma-to-carcinoma sequence of colorectal cancer

Prashanthi Ramesh, Tamsin R. M. Lannagan, Rene Jackstadt, Lidia Atencia Taboada, Nico Lansu, Pratyaksha Wirapati, Sander R. van Hooff, Danielle Dekker, Jessica Pritchard, Aleksandar B. Kirov, Sanne M. van Neerven, Sabine Tejpar, Geert J. P. L. Kops, Owen J. Sansom, Jan Paul Medema

Research output: Contribution to journalArticleAcademicpeer-review

25 Citations (Scopus)

Abstract

Evasion of apoptosis is a hallmark of cancer, which is frequently mediated by upregulation of the antiapoptotic BCL-2 family proteins. In colorectal cancer (CRC), previous work has highlighted differential antiapoptotic protein dependencies determined by the stage of the disease. While intestinal stem cells (ISCs) require BCL-2 for adenoma outgrowth and survival during transformation, ISC-specific MCL1 deletion results in disturbed intestinal homeostasis, eventually contributing to tumorigenesis. Colon cancer stem cells (CSCs), however, no longer require BCL-2 and depend mainly on BCL-XL for their survival. We therefore hypothesized that a shift in antiapoptotic protein reliance occurs in ISCs as the disease progresses from normal to adenoma to carcinoma. By targeting antiapoptotic proteins with specific BH3 mimetics in organoid models of CRC progression, we found that BCL-2 is essential only during ISC transformation while MCL1 inhibition did not affect adenoma outgrowth. BCL-XL, on the other hand, was crucial for stem cell survival throughout the adenoma-to-carcinoma sequence. Furthermore, we identified that the limited window of BCL-2 reliance is a result of its downregulation by miR-17-5p, a microRNA that is upregulated upon APC-mutation driven transformation. Here we show that BCL-XL inhibition effectively impairs adenoma outgrowth in vivo and enhances the efficacy of chemotherapy. In line with this dependency, expression of BCL-XL, but not BCL-2 or MCL1, directly correlated to the outcome of chemotherapy-treated CRC patients. Our results provide insights to enable the rational use of BH3 mimetics in CRC management, particularly underlining the therapeutic potential of BCL-XL targeting mimetics in both early and late-stage disease.
Original languageEnglish
Pages (from-to)3282-3296
Number of pages15
JournalCell death and differentiation
Volume28
Issue number12
Early online date2021
DOIs
Publication statusPublished - Dec 2021

Cite this