TY - JOUR
T1 - Bile salts in control of lipid metabolism
AU - Schonewille, Marleen
AU - de Boer, Jan Freark
AU - Groen, Albert K.
PY - 2016
Y1 - 2016
N2 - The view on bile salts has evolved over the years from being regarded as simple detergents that aid intestinal absorption of fat-soluble nutrients to being important hormone-like integrators of metabolism. This review provides an update on the rapidly developing field of interactions between bile salts and lipid metabolism, with a particular emphasis on the underlying mechanisms. The nuclear receptor farnesoid X receptor (FXR) plays major roles in bile salt-mediated signaling pathways. The recent identification of novel FXR targets and factors involved in FXR signaling highlights the interactions of bile acids with lipid metabolism. Exciting data have been reported on the use of intestine-specific FXR agonists as well as antagonists. In addition, encouraging results for treatment of hepatic steatosis obtained with obeticholic acid in the FLINT trial underline the therapeutic potential of bile salt signaling and metabolism for the treatment of lipid disorders. Modulation of FXR activity appears to be a potent target, not only for improving bile salt homeostasis, but also to improve lipid metabolism. Depending on the metabolic context both, FXR agonists as well as antagonists, could prove to be of therapeutic benefit
AB - The view on bile salts has evolved over the years from being regarded as simple detergents that aid intestinal absorption of fat-soluble nutrients to being important hormone-like integrators of metabolism. This review provides an update on the rapidly developing field of interactions between bile salts and lipid metabolism, with a particular emphasis on the underlying mechanisms. The nuclear receptor farnesoid X receptor (FXR) plays major roles in bile salt-mediated signaling pathways. The recent identification of novel FXR targets and factors involved in FXR signaling highlights the interactions of bile acids with lipid metabolism. Exciting data have been reported on the use of intestine-specific FXR agonists as well as antagonists. In addition, encouraging results for treatment of hepatic steatosis obtained with obeticholic acid in the FLINT trial underline the therapeutic potential of bile salt signaling and metabolism for the treatment of lipid disorders. Modulation of FXR activity appears to be a potent target, not only for improving bile salt homeostasis, but also to improve lipid metabolism. Depending on the metabolic context both, FXR agonists as well as antagonists, could prove to be of therapeutic benefit
U2 - https://doi.org/10.1097/MOL.0000000000000303
DO - https://doi.org/10.1097/MOL.0000000000000303
M3 - Review article
C2 - 27031274
SN - 0957-9672
VL - 27
SP - 295
EP - 301
JO - Current opinion in lipidology
JF - Current opinion in lipidology
IS - 3
ER -