TY - JOUR
T1 - Biomarker A+T-
T2 - is this Alzheimer's disease or not? A combined CSF and pathology study
AU - Vromen, Eleonora M.
AU - de Boer, Sterre C. M.
AU - Teunissen, Charlotte E.
AU - Rozemuller, Annemieke
AU - Sieben, Anne
AU - Bjerke, Maria
AU - Visser, Pieter Jelle
AU - Bouwman, Femke H.
AU - Alzheimer’s Disease Neuroimaging Initiative
AU - Engelborghs, Sebastiaan
AU - Tijms, Betty M.
N1 - Funding Information: P.J.V. and B.M.T receive funding from ZonMw Memorabel Grant no 733050824. Funding Information: Data used in preparation of this article were obtained from the ADNI database ( adni.loni.usc.edu ). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf . This research was performed at the Amsterdam UMC Alzheimer Center, which is part of the neurodegeneration research program of Amsterdam Neuroscience ( www.amsterdamresearch.org ). The Alzheimer Center Amsterdam is supported by Stichting Alzheimer Nederland and Stichting VUmc fonds. The clinical database structure was developed with funding from Stichting Dioraphte. The Antwerp Dementia Cohort was supported by Institute Born-Bunge and the Special Research Fund of UAntwerp. Data collection and sharing for this project was funded by the ADNI (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd. and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson; Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health ( www.fnih.org ). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California. Publisher Copyright: © 2022 The Author(s). Published by Oxford University Press on behalf of the Guarantors of Brain.
PY - 2023/3/1
Y1 - 2023/3/1
N2 - The biological definition of Alzheimer's disease using CSF biomarkers requires abnormal levels of both amyloid (A) and tau (T). However, biomarkers and corresponding cutoffs may not always reflect the presence or absence of pathology. Previous studies suggest that up to 32% of individuals with autopsy-confirmed Alzheimer's disease show normal CSF p-tau levels in vivo, but these studies are sparse and had small sample sizes. Therefore, in three independent autopsy cohorts, we studied whether or not CSF A+T- excluded Alzheimer's disease based on autopsy. We included 215 individuals, for whom ante-mortem CSF collection and autopsy had been performed, from three cohorts: (i) the Amsterdam Dementia Cohort (ADC) [n = 80, 37 (46%) Alzheimer's disease at autopsy, time between CSF collection and death 4.5 ± 2.9 years]; (ii) the Antwerp Dementia Cohort (DEM) [n = 92, 84 (91%) Alzheimer's disease at autopsy, time CSF collection to death 1.7 ± 2.3 years]; and (iii) the Alzheimer's Disease Neuroimaging Initiative (ADNI) [n = 43, 31 (72%) Alzheimer's disease at autopsy, time CSF collection to death 5.1 ± 2.5 years]. Biomarker profiles were based on dichotomized CSF Aβ1-42 and p-tau levels. The accuracy of CSF AT profiles to detect autopsy-confirmed Alzheimer's disease was assessed. Lastly, we investigated whether the concordance of AT profiles with autopsy diagnosis improved when CSF was collected closer to death in 9 (10%) DEM and 30 (70%) ADNI individuals with repeated CSF measurements available. In total, 50-73% of A+T- individuals and 100% of A+T+ individuals had Alzheimer's disease at autopsy. Amyloid status showed the highest accuracy to detect autopsy-confirmed Alzheimer's disease (accuracy, sensitivity and specificity in the ADC: 88%, 92% and 84%; in the DEM: 87%, 94% and 12%; and in the ADNI cohort: 86%, 90% and 75%, respectively). The addition of CSF p-tau did not further improve these estimates. We observed no differences in demographics or degree of Alzheimer's disease neuropathology between A+T- and A+T+ individuals with autopsy-confirmed Alzheimer's disease. All individuals with repeated CSF measurements remained stable in Aβ1-42 status during follow-up. None of the Alzheimer's disease individuals with a normal p-tau status changed to abnormal; however, four (44%) DEM individuals and two (7%) ADNI individuals changed from abnormal to normal p-tau status over time, and all had Alzheimer's disease at autopsy. In summary, we found that up to 73% of A+T- individuals had Alzheimer's disease at autopsy. This should be taken into account in both research and clinical settings.
AB - The biological definition of Alzheimer's disease using CSF biomarkers requires abnormal levels of both amyloid (A) and tau (T). However, biomarkers and corresponding cutoffs may not always reflect the presence or absence of pathology. Previous studies suggest that up to 32% of individuals with autopsy-confirmed Alzheimer's disease show normal CSF p-tau levels in vivo, but these studies are sparse and had small sample sizes. Therefore, in three independent autopsy cohorts, we studied whether or not CSF A+T- excluded Alzheimer's disease based on autopsy. We included 215 individuals, for whom ante-mortem CSF collection and autopsy had been performed, from three cohorts: (i) the Amsterdam Dementia Cohort (ADC) [n = 80, 37 (46%) Alzheimer's disease at autopsy, time between CSF collection and death 4.5 ± 2.9 years]; (ii) the Antwerp Dementia Cohort (DEM) [n = 92, 84 (91%) Alzheimer's disease at autopsy, time CSF collection to death 1.7 ± 2.3 years]; and (iii) the Alzheimer's Disease Neuroimaging Initiative (ADNI) [n = 43, 31 (72%) Alzheimer's disease at autopsy, time CSF collection to death 5.1 ± 2.5 years]. Biomarker profiles were based on dichotomized CSF Aβ1-42 and p-tau levels. The accuracy of CSF AT profiles to detect autopsy-confirmed Alzheimer's disease was assessed. Lastly, we investigated whether the concordance of AT profiles with autopsy diagnosis improved when CSF was collected closer to death in 9 (10%) DEM and 30 (70%) ADNI individuals with repeated CSF measurements available. In total, 50-73% of A+T- individuals and 100% of A+T+ individuals had Alzheimer's disease at autopsy. Amyloid status showed the highest accuracy to detect autopsy-confirmed Alzheimer's disease (accuracy, sensitivity and specificity in the ADC: 88%, 92% and 84%; in the DEM: 87%, 94% and 12%; and in the ADNI cohort: 86%, 90% and 75%, respectively). The addition of CSF p-tau did not further improve these estimates. We observed no differences in demographics or degree of Alzheimer's disease neuropathology between A+T- and A+T+ individuals with autopsy-confirmed Alzheimer's disease. All individuals with repeated CSF measurements remained stable in Aβ1-42 status during follow-up. None of the Alzheimer's disease individuals with a normal p-tau status changed to abnormal; however, four (44%) DEM individuals and two (7%) ADNI individuals changed from abnormal to normal p-tau status over time, and all had Alzheimer's disease at autopsy. In summary, we found that up to 73% of A+T- individuals had Alzheimer's disease at autopsy. This should be taken into account in both research and clinical settings.
KW - AT(N)
KW - Alzheimer's disease
KW - CSF
KW - autopsy
KW - biomarker
UR - http://www.scopus.com/inward/record.url?scp=85149171226&partnerID=8YFLogxK
U2 - https://doi.org/10.1093/brain/awac158
DO - https://doi.org/10.1093/brain/awac158
M3 - Article
C2 - 35511164
SN - 0006-8950
VL - 146
SP - 1166
EP - 1174
JO - Brain
JF - Brain
IS - 3
ER -