Abstract
We investigated the effects of low frequency fatigue (LFF) on post-exercise changes in rectified surface EMG (rsEMG) and single motor unit EMG (smuEMG) in vastus lateralis muscle (n=9). On two experimental days the knee extensors were fatigued with a 60-s-isometric contraction (exercise) at 50% maximal force capacity (MFC). On the first day post-exercise (15 s, 3, 9, 15, 21 and 27 min) rsEMG and electrically-induced (surface stimulation) forces were investigated. SmuEMG was obtained on day two. During short ramp and hold (5 s) contractions at 50% MFC, motor unit discharges of the same units were followed over time. Post-exercise MFC and tetanic force (100 Hz stimulation) recovered to about 90% of the pre-exercise values, but recovery with 20 Hz stimulation was less complete: the 20-100 Hz force ratio (mean ± SD) decreased from 0.65±0.06 (pre-exercise) to 0.56±0.04 at 27 min post-exercise (P<0.05), indicative of LFF. At 50% MFC, pre-exercise rsEMG (% pre-exercise maximum) and motor unit discharge rate were 51.1±12.7% and 14.1±3.7 (pulses per second; pps) respectively, 15 s post-exercise the respective values were 61.4±15.4% (P<0.05) and 13.2±5.6 pps (P>0.05). Thereafter, rsEMG (at 50% MFC) remained stable but motor unit discharge rate significantly increased to 17.7±3.9 pps 27 min post-exercise. The recruitment threshold decreased (P<0.05) from 27.7±6.6% MFC before exercise to 25.2±6.7% 27 min post-exercise. The increase in discharge rate was significantly greater than could be expected from the decrease in recruitment threshold. Thus, post-exercise LFF was compensated by increased motor unit discharge rates which could only partly be accounted for by the small decrease in motor unit recruitment threshold. © Springer-Verlag 2005.
Original language | English |
---|---|
Pages (from-to) | 659-69 |
Number of pages | 11 |
Journal | European journal of applied physiology |
Volume | 94 |
Issue number | 5-6 |
Early online date | 11 May 2005 |
DOIs | |
Publication status | Published - Aug 2005 |
Keywords
- Adaptation, Physiological/physiology
- Adult
- Electric Stimulation
- Electromyography/methods
- Exercise Test
- Female
- Humans
- Isometric Contraction/physiology
- Knee/physiology
- Male
- Motor Neurons/physiology
- Muscle Contraction
- Muscle Fatigue/physiology
- Muscle, Skeletal/innervation
- Physical Endurance/physiology
- Stress, Mechanical