TY - JOUR
T1 - Characterization of organic anion transporter regulation, glutathione metabolism and bile formation in the obese Zucker rat
AU - Geier, Andreas
AU - Dietrich, Christoph G.
AU - Grote, Tobias
AU - Beuers, Ulrich
AU - Prüfer, Thomas
AU - Fraunberger, Peter
AU - Matern, Siegfried
AU - Gartung, Carsten
AU - Gerbes, Alexander L.
AU - Bilzer, Manfred
PY - 2005
Y1 - 2005
N2 - BACKGROUND/AIMS: Alterations in hepatobiliary transporters may render fatty livers more vulnerable against various toxic insults. METHODS: We therefore studied expression and function of key organic anion transporters and their transactivators in 8-week-old obese Zucker rats, an established model for non-alcoholic fatty liver disease. RESULTS: Compared to their heterozygous littermates, obese animals showed a significant reduction in canalicular bile salt secretion, which was paralleled by significantly diminished Oatp2 mRNA and protein levels together with reduced nuclear HNF3beta, while expression of bile salt export pump, organic anion transporter (Oatp) 1 and multidrug resistance-associated protein (Mrp) 4 were unchanged. Impaired bile salt-independent bile flow in obese rats was associated with a 50% reduction of biliary secretion of the Mrp 2 model-substrates glutathione disulfide and S-(2,4-dinitrophenyl)glutathione. In line Mrp2 protein expression was reduced by 50% in obese rats. CONCLUSIONS: Oatp2 and Mrp2 expression is decreased in fatty liver and may impair metabolism and biliary secretion of numerous xenobiotics. Reduction of bile salt secretion and absence of biliary GSH excretion may contribute to impaired bile flow and posthepatic disorders associated with biliary GSH depletion
AB - BACKGROUND/AIMS: Alterations in hepatobiliary transporters may render fatty livers more vulnerable against various toxic insults. METHODS: We therefore studied expression and function of key organic anion transporters and their transactivators in 8-week-old obese Zucker rats, an established model for non-alcoholic fatty liver disease. RESULTS: Compared to their heterozygous littermates, obese animals showed a significant reduction in canalicular bile salt secretion, which was paralleled by significantly diminished Oatp2 mRNA and protein levels together with reduced nuclear HNF3beta, while expression of bile salt export pump, organic anion transporter (Oatp) 1 and multidrug resistance-associated protein (Mrp) 4 were unchanged. Impaired bile salt-independent bile flow in obese rats was associated with a 50% reduction of biliary secretion of the Mrp 2 model-substrates glutathione disulfide and S-(2,4-dinitrophenyl)glutathione. In line Mrp2 protein expression was reduced by 50% in obese rats. CONCLUSIONS: Oatp2 and Mrp2 expression is decreased in fatty liver and may impair metabolism and biliary secretion of numerous xenobiotics. Reduction of bile salt secretion and absence of biliary GSH excretion may contribute to impaired bile flow and posthepatic disorders associated with biliary GSH depletion
U2 - https://doi.org/10.1016/j.jhep.2005.05.031
DO - https://doi.org/10.1016/j.jhep.2005.05.031
M3 - Article
C2 - 16139386
SN - 0168-8278
VL - 43
SP - 1021
EP - 1030
JO - Journal of Hepatology
JF - Journal of Hepatology
IS - 6
ER -