Combined genomic and proteomic approaches reveal DNA binding sites and interaction partners of TBX2 in the developing lung

Timo H. Lüdtke, Irina Wojahn, Marc-Jens Kleppa, Jasper Schierstaedt, Vincent M. Christoffels, Patrick Künzler, Andreas Kispert

Research output: Contribution to JournalArticleAcademicpeer-review

5 Citations (Scopus)


Background: Tbx2 encodes a transcriptional repressor implicated in the development of numerous organs in mouse. During lung development TBX2 maintains the proliferation of mesenchymal progenitors, and hence, epithelial proliferation and branching morphogenesis. The pro-proliferative function was traced to direct repression of the cell-cycle inhibitor genes Cdkn1a and Cdkn1b, as well as of genes encoding WNT antagonists, Frzb and Shisa3, to increase pro-proliferative WNT signaling. Despite these important molecular insights, we still lack knowledge of the DNA occupancy of TBX2 in the genome, and of the protein interaction partners involved in transcriptional repression of target genes. Methods: We used chromatin immunoprecipitation (ChIP)-sequencing and expression analyses to identify genomic DNA-binding sites and transcription units directly regulated by TBX2 in the developing lung. Moreover, we purified TBX2 containing protein complexes from embryonic lung tissue and identified potential interaction partners by subsequent liquid chromatography/mass spectrometry. The interaction with candidate proteins was validated by immunofluorescence, proximity ligation and individual co-immunoprecipitation analyses. Results: We identified Il33 and Ccn4 as additional direct target genes of TBX2 in the pulmonary mesenchyme. Analyzing TBX2 occupancy data unveiled the enrichment of five consensus sequences, three of which match T-box binding elements. The remaining two correspond to a high mobility group (HMG)-box and a homeobox consensus sequence motif. We found and validated binding of TBX2 to the HMG-box transcription factor HMGB2 and the homeobox transcription factor PBX1, to the heterochromatin protein CBX3, and to various members of the nucleosome remodeling and deacetylase (NuRD) chromatin remodeling complex including HDAC1, HDAC2 and CHD4. Conclusion: Our data suggest that TBX2 interacts with homeobox and HMG-box transcription factors as well as with the NuRD chromatin remodeling complex to repress transcription of anti-proliferative genes in the pulmonary mesenchyme.
Original languageEnglish
Article number85
JournalRespiratory Research
Issue number1
Publication statusPublished - 1 Dec 2021


  • CBX3
  • HDAC
  • HMGB2
  • Lung development
  • NuRD
  • PBX1
  • Pulmonary mesenchyme
  • Tbx2

Cite this