Composition and Antigenic Effects of Individual Glycan Sites of a Trimeric HIV-1 Envelope Glycoprotein

Anna-Janina Behrens, Snezana Vasiljevic, Laura K. Pritchard, David J. Harvey, Rajinder S. Andev, Stefanie A. Krumm, Weston B. Struwe, Albert Cupo, Abhinav Kumar, Nicole Zitzmann, Gemma E. Seabright, Holger B. Kramer, Daniel I. R. Spencer, Louise Royle, Jeong Hyun Lee, Per J. Klasse, Dennis R. Burton, Ian A. Wilson, Andrew B. Ward, Rogier W. SandersJohn P. Moore, Katie J. Doores, Max Crispin

Research output: Contribution to journalArticleAcademicpeer-review

204 Citations (Scopus)

Abstract

The HIV-1 envelope glycoprotein trimer is covered by an array of N-linked glycans that shield it from immune surveillance. The high density of glycans on the trimer surface imposes steric constraints limiting the actions of glycan-processing enzymes, so that multiple under-processed structures remain on specific areas. These oligomannose glycans are recognized by broadly neutralizing antibodies (bNAbs) that are not thwarted by the glycan shield but, paradoxically, target it. Our site-specific glycosylation analysis of a soluble, recombinant trimer (BG505 SOSIP.664) maps the extremes of simplicity and diversity of glycan processing at individual sites and reveals a mosaic of dense clusters of oligomannose glycans on the outer domain. Although individual sites usually minimally affect the global integrity of the glycan shield, we identify examples of how deleting some glycans can subtly influence neutralization by bNAbs that bind at distant sites. The network of bNAb-targeted glycans should be preserved on vaccine antigens
Original languageEnglish
Pages (from-to)2695-2706
JournalCell reports
Volume14
Issue number11
DOIs
Publication statusPublished - 2016

Cite this