Controlled Release of LL-37-Derived Synthetic Antimicrobial and Anti-Biofilm Peptides SAAP-145 and SAAP-276 Prevents Experimental Biomaterial-Associated Staphylococcus aureus Infection

Martijn Riool, Anna de Breij, Leonie de Boer, Paulus H. S. Kwakman, Robert A. Cordfunke, Or Cohen, Nermina Malanovic, Noam Emanuel, Karl Lohner, Jan W. Drijfhout, Peter H. Nibbering, Sebastian A. J. Zaat

Research output: Contribution to journalArticleAcademicpeer-review

51 Citations (Scopus)

Abstract

The present study aims to develop an implant coating releasing novel antimicrobial agents to prevent biomaterial-associated infections. The LL-37-derived synthetic antimicrobial and anti-biofilm peptides (SAAP)-145 and SAAP-276 exhibit potent bactericidal and anti-biofilm activities against clinical and multidrug-resistant Staphylococcus aureus strains by rapid membrane permeabilization, without inducing resistance. Injection of SAAP-145, but not SAAP-276, along subcutaneous implants in mice reduces S. aureus implant colonization by approximately 2 log, but does not reduce bacterial numbers in surrounding tissue. To improve their efficacy, SAAP-145 and SAAP-276 are incorporated in a polymer-lipid encapsulation matrix (PLEX) coating, providing a constant release of 0.6% daily up to 30 d after an initial burst release of >50%. In a murine model for biomaterial-associated infection, SAAP-145-PLEX and SAAP-276-PLEX coatings significantly reduce the number of culture positive implants and show >= 3.5 and >= 1.5 log lower S. aureus implant and tissue colonization, respectively. Interestingly, these peptide coatings are also highly effective against multidrug-resistant S. aureus, both reducing implant colonization by >= 2 log. SAAP-276-PLEX additionally reduces tissue colonization by 1 log. Together, the peptide-releasing PLEX coatings hold promise for further development as an alternative to coatings releasing conventional antibiotics to prevent biomaterial-associated infections
Original languageEnglish
Pages (from-to)1606623
JournalAdvanced functional materials
Volume27
Issue number20
DOIs
Publication statusPublished - 2017

Cite this