Design and validation of a finite element model of the aponeurotic and free Achilles tendon

Pedro Diniz, Carlos Quental, Pedro Violindo, João Veiga Gomes, H. lder Pereira, Gino M. M. J. Kerkhoffs, Frederico Castelo Ferreira, João Folgado

Research output: Contribution to journalArticleAcademicpeer-review

2 Citations (Scopus)


The Achilles tendon (AT) is a common injury site. Ruptures are usually located in the free tendon but may cross the myotendinous junction into the aponeurotic region. Considering the possibility of aponeurotic region involvement in AT ruptures, a novel three dimensional (3D) finite element (FE) model that includes both the aponeurotic and free AT regions and features subtendon twisting and sliding was developed. It was hypothesized that the model would be able to predict in vivo data collected from the literature, thus being considered valid, and that model outputs would be most sensitive to subtendon twist configurations. The 3D model was constructed using magnetic resonance images. The model was divided into soleus and gastrocnemius subtendons. In addition to a frictionless contact condition, the interaction between subtendons was modeled using two contact formulations: sliding with anisotropic friction and no sliding. Loads were applied on the tendon's most proximal cross-section and anterior surface, with magnitudes estimated from in vivo studies. Model outputs were compared with experimental data regarding 3D deformation, transverse plane rotation, and nodal displacements in the free tendon. The FE model adequately simulated the free tendon behavior regarding longitudinal strain, cross-section area variation, transverse plane rotation, and sagittal nodal displacements, provided that subtendon sliding was allowed. The frictionless model exhibited noticeable medial transverse sliding of the soleus subtendon, which was present to a much lesser degree in the anisotropic friction model. Model outputs were most sensitive to variations in subtendon twist and dispersion of the collagen fiber orientations. Clinical Significance: This Achilles tendon finite element model, validated using in vivo experimental data, may be used to study its mechanical behavior, injury mechanisms, and rupture risk factors.
Original languageEnglish
JournalJournal of orthopaedic research
Early online date2022
Publication statusPublished - 3 Jul 2022


  • Achilles tendon
  • finite element modeling
  • model validation

Cite this