Abstract

Fibrodysplasia Ossificans Progressiva (FOP) is a genetic disease characterized by the formation of heterotopic ossification (HO) in connective tissues. HO first develops in the thoracic region, before more peripheral sites are affected. Due to HO along the thoracic cage, its movements are restricted and pulmonary function deteriorates. Because development of HO is progressive, it is likely that pulmonary function deteriorates over time, but longitudinal data on pulmonary function in FOP are missing. Longitudinal pulmonary function tests (PFTs) from seven FOP patients were evaluated retrospectively to assess whether there were changes in pulmonary function during aging. Forced vital capacity (FVC), forced expiratory volume in one second (FEV1), total lung capacity (TLC), residual volume (RV) and diffusing lung capacity for carbon dioxide divided by alveolar volume (DLCO/VA) were included. In addition, HO volume along the thorax together with its progression as identified by whole body low dose CT scans were correlated to PFT data. Per patient, aged 7-57 years at the time of the first PFT, three to nine PFTs were available over a period of 6-18 years. Restrictive pulmonary function, identified by TLC or suspected by FVC, was found in all, but one, patients. In three patients, TLC, FVC or both decreased further during the follow-up period. All, but one, patients had an increased RV. The DLCO/VA ratio was normal in all FOP patients. Interestingly, FEV1 increased after a surgical intervention to unlock the jaw. In four out of five patients total HO volume in the thoracic region progressed beyond early adulthood, but no further decline in FVC was observed. In conclusion, restrictive pulmonary function was found in the majority of patients already at an early age. Our data suggest that the deterioration in pulmonary function is age dependent.

Original languageEnglish
Article number100758
Pages (from-to)100758
JournalBone Reports
Volume14
DOIs
Publication statusPublished - 1 Jun 2021

Keywords

  • Fibrodysplasia Ossificans Progressiva
  • Heterotopic ossification
  • Pulmonary function

Cite this