Difference in sperm head volume as a theoretical basis for sorting X- and Y-bearing spermatozoa: potentials and limitations

E. B. van Munster, J. Stap, R. A. Hoebe, G. J. te Meerman, J. A. Aten

Research output: Contribution to journalArticle*Academicpeer-review

Abstract

Volume-based sorting of X- and Y-chromosome-bearing sperm cells could be an interesting alternative to the existing technique based on DNA content. Advantages would be that DNA staining and ultraviolet excitation, used in the existing technique, could be avoided. To assess the possibilities and limitations of sperm-head volume as sorting criterion, achievable purity and yield are determined for bull sperm. Two important parameters in this respect are the magnitude of the volume difference and the biological variation within each (X or Y) population. Earlier, we established a difference in volume matching the difference in DNA content (3.8%) between X- and Y-bearing bull sperm heads by comparing thicknesses and areas of high numbers of pre-sorted X- and Y-bearing bull sperm heads by interference microscopy and subsequent image analysis. Unfortunately, despite the high number of measurements, a direct determination of biological variations was not possible due to an unknown contribution of instrumental variations. In this paper, we determine the contribution of instrumental errors by measuring a single sperm head, varying parameters such as location in the image, orientation angle, focusing etc., simulating the behavior of the measuring system. After correction, both for the instrumental variation, and for the fact that the original samples were not pure, biological variations in volume of 5.9 +/- 0.8% were found. Our results indicate that when 10% of the bull sperm are sorted on basis of their head volume, a theoretical enrichment of 80% could be achieved. Expected purity and yield are lower than what is standard for the existing technique. At the moment, a technique to physically separate X- and Y-bearing sperm cells based on volume is not available. However, for applications for which the potential hazards of DNA staining and UV excitation are problematic, the development of such technique should be considered
Original languageEnglish
Pages (from-to)1281-1293
JournalTheriogenology
Volume52
Issue number8
DOIs
Publication statusPublished - 1999

Cite this