TY - JOUR
T1 - Dissection of the Effects of JAK and BTK Inhibitors on the Functionality of Healthy and Malignant Lymphocytes
AU - Hofland, Tom
AU - de Weerdt, Iris
AU - ter Burg, Hanneke
AU - de Boer, Renate
AU - Tannheimer, Stacey
AU - Tonino, Sanne H.
AU - Kater, Arnon P.
AU - Eldering, Eric
PY - 2019/10/15
Y1 - 2019/10/15
N2 - Despite the emergence of small molecule inhibitors, current treatment strategies for chronic lymphocytic leukemia (CLL) are not curative, and the search for new therapeutic modalities continues. Prosurvival signaling derived from the microenvironment is often mediated via JAK signaling. However, whether JAK inhibitors are useful in CLL therapy has not been studied extensively. JAK inhibitors are valuable therapeutic agents in myelofibrosis and show promising results in graft-versus-host-disease. However, JAK inhibition is associated with an increased infection risk, presumably because of the effect on other immune cells, a feature shared with other kinase inhibitors used for CLL treatment, such as the BTK inhibitor ibrutinib and the PI3Kδ inhibitor idelalisib. We compared functional effects of the JAK1/2 inhibitors momelotinib and ruxolitinib, the BTK inhibitors ibrutinib and tirabrutinib, and PI3Kδ inhibitor idelalisib on malignant CLL cells but also on healthy human T, B, and NK lymphocytes. We found several interesting differences among the inhibitors, apart from expected and well-known effects. Momelotinib but not ruxolitinib blocked cytokine-induced proliferation of CLL cells. Momelotinib also reduced BCR signaling, in contrast to ruxolitinib, indicating that these JAK inhibitors in fact have a distinct target spectrum. In contrast to tirabrutinib, ibrutinib had inhibitory effects on T cell activation, probably because of ITK inhibition. Remarkably, both BTK inhibitors stimulated IFN-γ production in a mixed lymphocyte reaction. Collectively, our results demonstrate that kinase inhibitors directed at identical targets may have differential effects on lymphocyte function. Their unique profile could be strategically employed to balance desired versus unwanted lymphocyte inhibition.
AB - Despite the emergence of small molecule inhibitors, current treatment strategies for chronic lymphocytic leukemia (CLL) are not curative, and the search for new therapeutic modalities continues. Prosurvival signaling derived from the microenvironment is often mediated via JAK signaling. However, whether JAK inhibitors are useful in CLL therapy has not been studied extensively. JAK inhibitors are valuable therapeutic agents in myelofibrosis and show promising results in graft-versus-host-disease. However, JAK inhibition is associated with an increased infection risk, presumably because of the effect on other immune cells, a feature shared with other kinase inhibitors used for CLL treatment, such as the BTK inhibitor ibrutinib and the PI3Kδ inhibitor idelalisib. We compared functional effects of the JAK1/2 inhibitors momelotinib and ruxolitinib, the BTK inhibitors ibrutinib and tirabrutinib, and PI3Kδ inhibitor idelalisib on malignant CLL cells but also on healthy human T, B, and NK lymphocytes. We found several interesting differences among the inhibitors, apart from expected and well-known effects. Momelotinib but not ruxolitinib blocked cytokine-induced proliferation of CLL cells. Momelotinib also reduced BCR signaling, in contrast to ruxolitinib, indicating that these JAK inhibitors in fact have a distinct target spectrum. In contrast to tirabrutinib, ibrutinib had inhibitory effects on T cell activation, probably because of ITK inhibition. Remarkably, both BTK inhibitors stimulated IFN-γ production in a mixed lymphocyte reaction. Collectively, our results demonstrate that kinase inhibitors directed at identical targets may have differential effects on lymphocyte function. Their unique profile could be strategically employed to balance desired versus unwanted lymphocyte inhibition.
UR - https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85072994340&origin=inward
UR - https://www.ncbi.nlm.nih.gov/pubmed/31511358
U2 - https://doi.org/10.4049/jimmunol.1900321
DO - https://doi.org/10.4049/jimmunol.1900321
M3 - Article
C2 - 31511358
SN - 0022-1767
VL - 203
SP - 2100
EP - 2109
JO - Journal of Immunology
JF - Journal of Immunology
IS - 8
ER -