Abstract

Background: Severe chronic kidney disease (CKD) in children and young adults has shown to be associated with abnormal brain development, which may contribute to neurocognitive impairments. We aimed to investigate risk factors for neurocognitive impairment and investigate the relation with structural brain abnormalities in young severe CKD patients. Methods: This cross-sectional study includes 28 patients with severe CKD (eGFR < 30), aged 8–30 years (median 18.5 years), on different treatment modalities (pre-dialysis [n = 8], dialysis [n = 8], transplanted [n = 12]). We assessed neurocognitive functioning using a comprehensive test battery and brain structure by magnetic resonance imaging metrics of brain volume and white matter integrity (fractional anisotropy [FA] and mean diffusivity [MD] measured with diffusion tensor imaging). Multivariate regression and mediation analyses were performed between clinical CKD parameters, brain structure, and neurocognitive outcome. Results: A combination of risk factors (e.g., longer time since kidney transplantation, longer dialysis duration and late CKD onset) was significantly associated with lower intelligence and/or worse processing speed and working memory. Lower FA in a cluster of white matter tracts was associated with lower intelligence and mediated the relation between clinical risk factors and lower intelligence. Conclusions: Young severe CKD patients with a prolonged duration of kidney replacement therapy, either dialysis or transplantation are at particular risk for impairments in intelligence, processing speed, and working memory. Disrupted white matter integrity may importantly contribute to these neurocognitive impairments. Prospective, longitudinal studies are needed to elucidate the mechanisms involved in CKD and treatment that affect white matter integrity and neurocognitive outcome in young patients. Graphical abstract: [Figure not available: see fulltext.].

Original languageEnglish
JournalPediatric nephrology (Berlin, Germany)
Early online date2 Nov 2022
DOIs
Publication statusE-pub ahead of print - 2 Nov 2022

Keywords

  • Brain structure
  • Cognition
  • Diffusion tensor imaging
  • Executive functioning
  • Kidney replacement therapy

Cite this