Evidence for a role of heat-shock proteins in proliferation after heat treatment of synchronized mouse neuroblastoma cells

G. Van Dongen, R. Van Wijk

Research output: Contribution to journalArticleAcademicpeer-review

9 Citations (Scopus)


A role for heat-shock proteins (HSPs) in proliferation after heat treatment was considered in synchronized mouse neuroblastoma cells. For this purpose enhancement of HSP synthesis after heat treatment was inhibited by actinomycin D and the effect of this on cell cycle progression into mitosis and on cell survival was studied both in thermoresistant G1- and in thermosensitive late S/G2-phase cells. In G1-phase cells expression of basal and heat-induced HSP synthesis was the same as that in late S/G2-phase cells, which suggests that regulation of thermoresistance throughout the cell cycle is not directly linked with HSP synthesis. The synthesis of HSP36, HSP68, and HSP70 was enhanced after a 30-min treatment at 41-43°C. Increase of HSP synthesis after heat shock was partly suppressed by the presence of 0.1 μg/ml actinomycin D during heat treatment, while 0.2 μg/ml prevented enhancement of HSP synthesis completely. Suppression of heat-induced HSP synthesis by actinomycin D had the same concentration dependency in G1- and late S/G2-phase cells. Actinomycin D potentiated induction of mitotic delay by heat treatment (30 min, 42.5°C) but only under conditions where it actually inhibited heat-induced enhancement of HSP synthesis. Heat-induced cell killing was also potentiated by actinomycin D. The potentiating effect of actinomycin D on heat-induced mitotic delay and on heat-induced cell killing was more pronounced in G1-phase cells than in late S/G2-phase cells. These results give evidence for a role of HSPs in the resumption of proliferation after heat treatment and suggest that heated G1-phase cells are more dependent on HSP synthesis for recovery of proliferation after heat treatment than heated late S/G2-phase cells.

Original languageEnglish
Pages (from-to)252-267
Number of pages16
JournalRadiation research
Issue number2
Publication statusPublished - 1 Jan 1988

Cite this