TY - JOUR
T1 - Expression of the human sodium/iodide symporter (hNIS) in xenotransplanted human thyroid carcinoma
AU - Smit, J. W.
AU - Schröder-van der Elst, J. P.
AU - Karperien, M.
AU - Que, I.
AU - Romijn, J. A.
AU - van der Heide, D.
PY - 2001
Y1 - 2001
N2 - The uptake of iodide in thyroid epithelial cells is mediated by the sodium/iodide symporter (NIS). The uptake of iodide is of vital importance for thyroid physiology and is a prerequisite for radioiodine therapy in thyroid cancer. Loss of iodide uptake due to diminished expression of the human NIS (hNIS) is frequently observed in metastasized thyroid cancer. So far, no animal model for the study of radioiodine therapy in thyroid cancer has been available. Strategies to restore iodide uptake in thyroid cancer include the exploration of hNIS gene transfer into hNIS defective thyroid cancer. We have performed a stable transfection of hNIS into the hNIS defective follicular thyroid carcinoma cell line FTC133. Stably transfected colonies exhibited high uptake of Na125I, which could be blocked completely with sodium perchlorate. hNIS transfected FTC133 and non-transfected cell lines injected subcutaneously in nude mice formed tumors after 6 weeks. Iodide uptake in the hNIS transfected tumor was much higher than in non-transfected tumor, but a rapid release of radioactivity from the hNIS transfected tumor was observed. Further studies are necessary to investigate the role of hNIS in relation to other thyroid specific proteins in iodide metabolism in thyroid cancer
AB - The uptake of iodide in thyroid epithelial cells is mediated by the sodium/iodide symporter (NIS). The uptake of iodide is of vital importance for thyroid physiology and is a prerequisite for radioiodine therapy in thyroid cancer. Loss of iodide uptake due to diminished expression of the human NIS (hNIS) is frequently observed in metastasized thyroid cancer. So far, no animal model for the study of radioiodine therapy in thyroid cancer has been available. Strategies to restore iodide uptake in thyroid cancer include the exploration of hNIS gene transfer into hNIS defective thyroid cancer. We have performed a stable transfection of hNIS into the hNIS defective follicular thyroid carcinoma cell line FTC133. Stably transfected colonies exhibited high uptake of Na125I, which could be blocked completely with sodium perchlorate. hNIS transfected FTC133 and non-transfected cell lines injected subcutaneously in nude mice formed tumors after 6 weeks. Iodide uptake in the hNIS transfected tumor was much higher than in non-transfected tumor, but a rapid release of radioactivity from the hNIS transfected tumor was observed. Further studies are necessary to investigate the role of hNIS in relation to other thyroid specific proteins in iodide metabolism in thyroid cancer
U2 - https://doi.org/10.1055/s-2001-11019
DO - https://doi.org/10.1055/s-2001-11019
M3 - Article
C2 - 11573141
SN - 0947-7349
VL - 109
SP - 52
EP - 55
JO - Experimental and clinical endocrinology & diabetes
JF - Experimental and clinical endocrinology & diabetes
IS - 1
ER -