Four-dimensional computed tomographic analysis of esophageal mobility during normal respiration

Research output: Contribution to journalArticleAcademicpeer-review

98 Citations (Scopus)

Abstract

Background: Chemo-radiotherapy for thoracic tumors can result in high-grade radiation esophagitis. Treatment planning to reduce esophageal irradiation requires organ motion to be accounted for. In this study, esophageal mobility was assessed using four-dimensional computed tomography (4DCT). Methods and Materials: Thoracic 4DCT scans were acquired on a 16-slice CT scanner in 29 patients. The outer esophageal wall was contoured in two extreme phases of respiration in 9 patients with nonesophageal malignancies. The displacement of the center of contour was measured at 2-cm intervals. In 20 additional patients with Stage I lung cancer, the esophagus was contoured in all 10 phases of each 4DCT at five defined anatomic levels. Both approaches were then applied to 4DCT scans of 4 patients who each had two repeat scans performed. A linear mixed effects model was constructed with fixed effects: measurement direction, measurement type, and measurement location along the cranio-caudal axis. Results: Measurement location and direction were significant descriptive parameters (Wald F-tests, p < 0.001), and the interaction term between the two was significant (p = 0.02). Medio-lateral mobility exceeded dorso-ventral mobility in the lower half of the esophagus but was of a similar magnitude in the upper half. Margins that would have incorporated all movement in medio-lateral and dorso-ventral directions were 5 mm proximally, 7 mm and 6 mm respectively in the mid-esophagus, and 9 mm and 8 mm respectively in the distal esophagus. Conclusions: The distal esophagus shows more mobility. Margins for mobility that can encompass all movement were derived for use in treatment planning, particularly for stereotactic radiotherapy.

Original languageEnglish
Pages (from-to)775-780
Number of pages6
JournalInternational Journal of Radiation Oncology Biology Physics
Volume67
Issue number3
DOIs
Publication statusPublished - 1 Mar 2007

Keywords

  • Esophagus
  • Four-dimensional computed tomography
  • Margins
  • Mobility
  • Radiation toxicity

Cite this