Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway

Ralf A Linker, De-Hyung Lee, Sarah Ryan, Anne M van Dam, Rebecca Conrad, Pradeep Bista, Weike Zeng, Xiaoping Hronowsky, Alex Buko, Sowmya Chollate, Gisa Ellrichmann, Wolfgang Brück, Kate Dawson, Susan Goelz, Stefan Wiese, Robert H Scannevin, Matvey Lukashev, Ralf Gold

Research output: Contribution to journalArticleAcademicpeer-review

902 Citations (Scopus)

Abstract

Inflammation and oxidative stress are thought to promote tissue damage in multiple sclerosis. Thus, novel therapeutics enhancing cellular resistance to free radicals could prove useful for multiple sclerosis treatment. BG00012 is an oral formulation of dimethylfumarate. In a phase II multiple sclerosis trial, BG00012 demonstrated beneficial effects on relapse rate and magnetic resonance imaging markers indicative of inflammation as well as axonal destruction. First we have studied effects of dimethylfumarate on the disease course, central nervous system, tissue integrity and the molecular mechanism of action in an animal model of chronic multiple sclerosis: myelin oligodendrocyte glycoprotein induced experimental autoimmune encephalomyelitis in C57BL/6 mice. In the chronic phase of experimental autoimmune encephalomyelitis, preventive or therapeutic application of dimethylfumarate ameliorated the disease course and improved preservation of myelin, axons and neurons. In vitro, the application of fumarates increased murine neuronal survival and protected human or rodent astrocytes against oxidative stress. Application of dimethylfumarate led to stabilization of the transcription factor nuclear factor (erythroid-derived 2)-related factor 2, activation of nuclear factor (erythroid-derived 2)-related factor 2-dependent transcriptional activity and accumulation of NADP(H) quinoline oxidoreductase-1 as a prototypical target gene. Furthermore, the immediate metabolite of dimethylfumarate, monomethylfumarate, leads to direct modification of the inhibitor of nuclear factor (erythroid-derived 2)-related factor 2, Kelch-like ECH-associated protein 1, at cysteine residue 151. In turn, increased levels of nuclear factor (erythroid-derived 2)-related factor 2 and reduced protein nitrosylation were detected in the central nervous sytem of dimethylfumarate-treated mice. Nuclear factor (erythroid-derived 2)-related factor 2 was also upregulated in the spinal cord of autopsy specimens from untreated patients with multiple sclerosis. In dimethylfumarate-treated mice suffering from experimental autoimmune encephalomyelitis, increased immunoreactivity for nuclear factor (erythroid-derived 2)-related factor 2 was detected by confocal microscopy in neurons of the motor cortex and the brainstem as well as in oligodendrocytes and astrocytes. In mice deficient for nuclear factor (erythroid-derived 2)-related factor 2 on the same genetic background, the dimethylfumarate mediated beneficial effects on clinical course, axon preservation and astrocyte activation were almost completely abolished thus proving the functional relevance of this transcription factor for the neuroprotective mechanism of action. We conclude that the ability of dimethylfumarate to activate nuclear factor (erythroid-derived 2)-related factor 2 may offer a novel cytoprotective modality that further augments the natural antioxidant responses in multiple sclerosis tissue and is not yet targeted by other multiple sclerosis therapies.

Original languageEnglish
Pages (from-to)678-692
Number of pages15
JournalBrain
Volume134
Issue numberPt 3
DOIs
Publication statusPublished - Mar 2011

Keywords

  • 2',3'-Cyclic-Nucleotide Phosphodiesterases
  • Aldehyde Reductase
  • Animals
  • Antigens, Differentiation
  • Antioxidants
  • Astrocytes
  • Axons
  • CD3 Complex
  • Cell Proliferation
  • Cells, Cultured
  • Chromatography, High Pressure Liquid
  • Cytokines
  • Disease Models, Animal
  • Embryo, Mammalian
  • Encephalomyelitis, Autoimmune, Experimental
  • Female
  • Fumarates
  • Gene Expression Regulation
  • Glycoproteins
  • Green Fluorescent Proteins
  • Humans
  • Hydrogen Peroxide
  • Journal Article
  • Mass Spectrometry
  • Mice
  • Mice, Inbred C57BL
  • Motor Neurons
  • Multiple Sclerosis
  • Myelin Proteins
  • Myelin-Oligodendrocyte Glycoprotein
  • NAD(P)H Dehydrogenase (Quinone)
  • NF-E2-Related Factor 2
  • Neuroprotective Agents
  • Nogo Proteins
  • Oxidative Stress
  • Peptide Fragments
  • RNA, Small Interfering
  • Research Support, Non-U.S. Gov't
  • Signal Transduction
  • Sleep
  • Spinal Cord
  • Statistics, Nonparametric
  • Tandem Mass Spectrometry
  • Time Factors
  • Transfection

Cite this