Harnessing solar power: photoautotrophy supplements the diet of a low-light dwelling sponge

Meggie Hudspith, Jasper M. de Goeij, Mischa Streekstra, Niklas A. Kornder, Jeremy Bougoure, Paul Guagliardo, Sara Campana, Nicole N. van der Wel, Gerard Muyzer, Laura Rix

Research output: Contribution to journalArticleAcademicpeer-review

7 Citations (Scopus)

Abstract

The ability of organisms to combine autotrophy and heterotrophy gives rise to one of the most successful nutritional strategies on Earth: mixotrophy. Sponges are integral members of shallow-water ecosystems and many host photosynthetic symbionts, but studies on mixotrophic sponges have focused primarily on species residing in high-light environments. Here, we quantify the contribution of photoautotrophy to the respiratory demand and total carbon diet of the sponge Chondrilla caribensis, which hosts symbiotic cyanobacteria and lives in low-light environments. Although the sponge is net heterotrophic at 20 m water depth, photosynthetically fixed carbon potentially provides up to 52% of the holobiont’s respiratory demand. When considering the total mixotrophic diet, photoautotrophy contributed an estimated 7% to total daily carbon uptake. Visualization of inorganic 13C- and 15N-incorporation using nanoscale secondary ion mass spectrometry (NanoSIMS) at the single-cell level confirmed that a portion of nutrients assimilated by the prokaryotic community was translocated to host cells. Photoautotrophy can thus provide an important supplemental source of carbon for sponges, even in low-light habitats. This trophic plasticity may represent a widespread strategy for net heterotrophic sponges hosting photosymbionts, enabling the host to buffer against periods of nutritional stress.
Original languageEnglish
Pages (from-to)2076-2086
Number of pages11
JournalISME journal
Volume16
Issue number9
Early online date2022
DOIs
Publication statusPublished - Sept 2022

Cite this