TY - JOUR
T1 - HIV co-opts a cellular antiviral mechanism, activation of stress kinase PKR by its RNA, to enable splicing of rev/tat mRNA
AU - Namer, Lise Sarah
AU - Harwig, Alex
AU - Heynen, Stephan P.
AU - Das, Atze T.
AU - Berkhout, Ben
AU - Kaempfer, Raymond
N1 - Funding Information: This work was supported by Israel Science Foundation grant to Raymond Kaempfer (63/11) and by Netherlands Organization for Scientific Research Chemical Sciences Division (NWO-CW) TOP grant to Ben Berkhout (700.59.301). Raymond Kaempfer was supported in part by a fellowship from the Netherlands Organization for Scientific Research (NWO). Publisher Copyright: © 2023, The Author(s).
PY - 2023/12/1
Y1 - 2023/12/1
N2 - Background: Activation of RNA-dependent stress kinase PKR, especially by viral double-stranded RNA, induces eukaryotic initiation factor 2 α-chain (eIF2α) phosphorylation, attenuating thereby translation. We report that this RNA-mediated negative control mechanism, considered a cornerstone of the cell’s antiviral response, positively regulates splicing of a viral mRNA. Results: Excision of the large human immunodeficiency virus (HIV) rev/tat intron depends strictly on activation of PKR by the viral RNA and on eIF2α phosphorylation. Rev/tat mRNA splicing was blocked by viral PKR antagonists Vaccinia E3L and Ebola VP35, as well as by a trans-dominant negative mutant of PKR, yet enhanced by overexpressing PKR. Expression of non-phosphorylatable mutant eIF2αS51A, but not of wild type eIF2α, abrogated efficient splicing of rev/tat mRNA. By contrast, expression of eIF2αS51D, a phosphomimetic mutant of eIF2α, left rev/tat mRNA splicing intact. Unlike eIF2αS51A, eIF2αS51D does not inhibit eIF2α phosphorylation by activated PKR. All HIV mRNA species contain terminal trans-activation response (TAR) stem-loop sequences that potentially could activate PKR, yet even upon TAR deletion, HIV mRNA production remained sensitive to inhibitors of PKR activation. Bioinformatic and mutational analyses revealed a compact RNA pseudoknot upstream of 3′-terminal TAR that promotes splicing by activating PKR. Supporting its essential role in control of splicing, this pseudoknot is conserved among diverse HIV and nonhuman primate SIVcpz isolates. The pseudoknot and 3′-terminal TAR collaborate in mediating PKR-regulated splicing of rev/tat intron, the pseudoknot being dominant. Conclusions: Our results on HIV provide the first example of a virus co-opting activation of PKR by its RNA, a cellular antiviral mechanism, to promote splicing. They raise the question whether other viruses may use local activation of host kinase PKR through RNA elements within their genome to achieve efficient splicing of their mRNA. Our experiments reveal an indispensable role for eIF2α phosphorylation in HIV rev/tat mRNA splicing that accounts for the need for PKR activation.
AB - Background: Activation of RNA-dependent stress kinase PKR, especially by viral double-stranded RNA, induces eukaryotic initiation factor 2 α-chain (eIF2α) phosphorylation, attenuating thereby translation. We report that this RNA-mediated negative control mechanism, considered a cornerstone of the cell’s antiviral response, positively regulates splicing of a viral mRNA. Results: Excision of the large human immunodeficiency virus (HIV) rev/tat intron depends strictly on activation of PKR by the viral RNA and on eIF2α phosphorylation. Rev/tat mRNA splicing was blocked by viral PKR antagonists Vaccinia E3L and Ebola VP35, as well as by a trans-dominant negative mutant of PKR, yet enhanced by overexpressing PKR. Expression of non-phosphorylatable mutant eIF2αS51A, but not of wild type eIF2α, abrogated efficient splicing of rev/tat mRNA. By contrast, expression of eIF2αS51D, a phosphomimetic mutant of eIF2α, left rev/tat mRNA splicing intact. Unlike eIF2αS51A, eIF2αS51D does not inhibit eIF2α phosphorylation by activated PKR. All HIV mRNA species contain terminal trans-activation response (TAR) stem-loop sequences that potentially could activate PKR, yet even upon TAR deletion, HIV mRNA production remained sensitive to inhibitors of PKR activation. Bioinformatic and mutational analyses revealed a compact RNA pseudoknot upstream of 3′-terminal TAR that promotes splicing by activating PKR. Supporting its essential role in control of splicing, this pseudoknot is conserved among diverse HIV and nonhuman primate SIVcpz isolates. The pseudoknot and 3′-terminal TAR collaborate in mediating PKR-regulated splicing of rev/tat intron, the pseudoknot being dominant. Conclusions: Our results on HIV provide the first example of a virus co-opting activation of PKR by its RNA, a cellular antiviral mechanism, to promote splicing. They raise the question whether other viruses may use local activation of host kinase PKR through RNA elements within their genome to achieve efficient splicing of their mRNA. Our experiments reveal an indispensable role for eIF2α phosphorylation in HIV rev/tat mRNA splicing that accounts for the need for PKR activation.
KW - Cellular antiviral response
KW - HIV
KW - PKR activation
KW - Phylogenetic conservation of RNA structure
KW - RNA pseudoknot
KW - Viral RNA
KW - eIF2alpha phosphorylation
KW - mRNA splicing
UR - http://www.scopus.com/inward/record.url?scp=85148248651&partnerID=8YFLogxK
U2 - https://doi.org/10.1186/s13578-023-00972-1
DO - https://doi.org/10.1186/s13578-023-00972-1
M3 - Article
C2 - 36774495
SN - 2045-3701
VL - 13
JO - Cell and Bioscience
JF - Cell and Bioscience
IS - 1
M1 - 28
ER -