Homocysteine affects cardiomyocyte viability: concentration-dependent effects on reversible flip-flop, apoptosis and necrosis

Jessica A Sipkens, Paul A J Krijnen, Christof Meischl, Saskia A G M Cillessen, Yvo M Smulders, Desirée E C Smith, Cindy P E Giroth, Marieke D Spreeuwenberg, René J P Musters, Alice Muller, Cornelis Jakobs, Dirk Roos, Coen D A Stehouwer, Jan A Rauwerda, Victor W M van Hinsbergh, Hans W M Niessen

Research output: Contribution to journalArticleAcademicpeer-review

42 Citations (Scopus)

Abstract

BACKGROUND: Hyperhomocysteinaemia (HHC) is thought to be a risk factor for cardiovascular disease including heart failure. While numerous studies have analyzed the role of homocysteine (Hcy) in the vasculature, only a few studies investigated the role of Hcy in the heart. Therefore we have analyzed the effects of Hcy on isolated cardiomyocytes.

METHODS: H9c2 cells (rat cardiomyoblast cells) and adult rat cardiomyocytes were incubated with Hcy and were analyzed for cell viability. Furthermore, we determined the effects of Hcy on intracellular mediators related to cell viability in cardiomyocytes, namely NOX2, reactive oxygen species (ROS), mitochondrial membrane potential (DeltaPsi (m)) and ATP concentrations.

RESULTS: We found that incubation of H9c2 cells with 0.1 mM D,L-Hcy (= 60 microM L-Hcy) resulted in an increase of DeltaPsi (m) as well as ATP concentrations. 1.1 mM D,L-Hcy (= 460 microM L-Hcy) induced reversible flip-flop of the plasma membrane phospholipids, but not apoptosis. Incubation with 2.73 mM D,L-Hcy (= 1.18 mM L-Hcy) induced apoptosis and necrosis. This loss of cell viability was accompanied by a thread-to-grain transition of the mitochondrial reticulum, ATP depletion and nuclear NOX2 expression coinciding with ROS production as evident from the presence of nitrotyrosin residues. Notably, only at this concentration we found a significant increase in S-adenosylhomocysteine which is considered the primary culprit in HHC.

CONCLUSION: We found concentration-dependent effects of Hcy in cardiomyocytes, varying from induction of reversible flip-flop of the plasma membrane phospholipids, to apoptosis and necrosis.

Original languageEnglish
Pages (from-to)1407-18
Number of pages12
JournalApoptosis
Volume12
Issue number8
DOIs
Publication statusPublished - Aug 2007

Keywords

  • Adenosine Triphosphate
  • Animals
  • Apoptosis
  • Caspase 3
  • Cell Membrane
  • Cell Survival
  • Cells, Cultured
  • Dose-Response Relationship, Drug
  • Gene Expression Regulation
  • Homocysteine
  • Journal Article
  • Membrane Fluidity
  • Membrane Glycoproteins
  • Membrane Potential, Mitochondrial
  • Mitochondria, Heart
  • Models, Biological
  • Myocytes, Cardiac
  • NADPH Oxidase 2
  • NADPH Oxidases
  • Necrosis
  • Phospholipids
  • Protein Processing, Post-Translational
  • Rats
  • Research Support, Non-U.S. Gov't
  • S-Adenosylhomocysteine
  • S-Adenosylmethionine

Cite this