TY - JOUR
T1 - Image-guided in-Vivo Needle-Based Confocal Laser Endomicroscopy in the Prostate
T2 - Safety and Feasibility Study in 2 Patients
AU - van Riel, Luigi A. M. J. G.
AU - Swaan, Abel
AU - Mannaerts, Christophe K.
AU - van Kollenburg, Rob A. A.
AU - Savci Heijink, C. Dilara
AU - de Reijke, Theo M.
AU - de Bruin, Daniel M.
AU - Freund, Jan Erik
N1 - Publisher Copyright: © The Author(s) 2022.
PY - 2022
Y1 - 2022
N2 - Purpose: To assess the safety and technical feasibility of in-vivo needle-based forward-looking confocal laser endomicroscopy in prostate tissue. Methods: For this feasibility study, 2 patients with a suspicion of prostate cancer underwent transperineal needle-based confocal laser endomicroscopy during ultrasound-guided transperineal template mapping biopsies. After intravenous administration of fluorescein, needle-based confocal laser endomicroscopy imaging was performed with a forward-looking probe (outer diameter 0.9 mm) in 2 trajectories during a manual push-forward and pullback motion. A biopsy was taken in a coregistered parallel adjacent trajectory to the confocal laser endomicroscopy trajectory for histopathologic comparison. Peri- and postprocedural adverse events, confocal laser endomicroscopy device malfunction and procedural failures were recorded. Needle-based confocal laser endomicroscopy image quality assessment, image interpretation, and histology were performed by an experienced confocal laser endomicroscopy rater and uro-pathologist, blinded to any additional information. Results: In both patients, no peri- and post-procedural adverse events were reported following needle-based confocal laser endomicroscopy. No confocal laser endomicroscopy device malfunction nor procedural failures were reported. Within 1.5 min after intravenous administration of fluorescein, needle-based confocal laser endomicroscopy image quality was sufficient for interpretation for at least 14 min, yielding more than 5000 confocal laser endomicroscopy frames per patient. The pullback confocal laser endomicroscopy recordings and most of the push-forward recordings almost only visualized erythrocytes, being classified as non-representative. During the push-forward recordings, prostate tissue was occasionally visualized in single frames, insufficient for histopathologic comparison. Prostate carcinoma was identified by biopsy in one patient (Gleason score 4 + 3 = 7, >50%), while the biopsy from the other patient showed no malignancy. Conclusion: Needle-based confocal laser endomicroscopy imaging of in-vivo prostate tissue with a forward-looking confocal laser endomicroscopy probe is safe without device malfunctions or procedural failures. Needle-based confocal laser endomicroscopy is technically feasible, but the acquired confocal laser endomicroscopy datasets are non-representative. The confocal laser endomicroscopy images’ non-representative nature is possibly caused by bleeding artifacts, movement artifacts and a lack of contact time with the tissue of interest. A different confocal laser endomicroscopy probe or procedure might yield representative images of prostatic tissue.
AB - Purpose: To assess the safety and technical feasibility of in-vivo needle-based forward-looking confocal laser endomicroscopy in prostate tissue. Methods: For this feasibility study, 2 patients with a suspicion of prostate cancer underwent transperineal needle-based confocal laser endomicroscopy during ultrasound-guided transperineal template mapping biopsies. After intravenous administration of fluorescein, needle-based confocal laser endomicroscopy imaging was performed with a forward-looking probe (outer diameter 0.9 mm) in 2 trajectories during a manual push-forward and pullback motion. A biopsy was taken in a coregistered parallel adjacent trajectory to the confocal laser endomicroscopy trajectory for histopathologic comparison. Peri- and postprocedural adverse events, confocal laser endomicroscopy device malfunction and procedural failures were recorded. Needle-based confocal laser endomicroscopy image quality assessment, image interpretation, and histology were performed by an experienced confocal laser endomicroscopy rater and uro-pathologist, blinded to any additional information. Results: In both patients, no peri- and post-procedural adverse events were reported following needle-based confocal laser endomicroscopy. No confocal laser endomicroscopy device malfunction nor procedural failures were reported. Within 1.5 min after intravenous administration of fluorescein, needle-based confocal laser endomicroscopy image quality was sufficient for interpretation for at least 14 min, yielding more than 5000 confocal laser endomicroscopy frames per patient. The pullback confocal laser endomicroscopy recordings and most of the push-forward recordings almost only visualized erythrocytes, being classified as non-representative. During the push-forward recordings, prostate tissue was occasionally visualized in single frames, insufficient for histopathologic comparison. Prostate carcinoma was identified by biopsy in one patient (Gleason score 4 + 3 = 7, >50%), while the biopsy from the other patient showed no malignancy. Conclusion: Needle-based confocal laser endomicroscopy imaging of in-vivo prostate tissue with a forward-looking confocal laser endomicroscopy probe is safe without device malfunctions or procedural failures. Needle-based confocal laser endomicroscopy is technically feasible, but the acquired confocal laser endomicroscopy datasets are non-representative. The confocal laser endomicroscopy images’ non-representative nature is possibly caused by bleeding artifacts, movement artifacts and a lack of contact time with the tissue of interest. A different confocal laser endomicroscopy probe or procedure might yield representative images of prostatic tissue.
KW - Gleason (MESH)
KW - biopsy (MESH)
KW - confocal laser endomicroscopy (non-MESH)
KW - diagnosis (MESH)
KW - prostate cancer (MESH)
UR - http://www.scopus.com/inward/record.url?scp=85133637721&partnerID=8YFLogxK
U2 - https://doi.org/10.1177/15330338221093149
DO - https://doi.org/10.1177/15330338221093149
M3 - Article
C2 - 35790459
SN - 1533-0346
VL - 21
JO - Technology in Cancer Research and Treatment
JF - Technology in Cancer Research and Treatment
ER -