TY - JOUR
T1 - In vitro and in vivo angiogenic capacity of BM-MSCs/HUVECs and AT-MSCs/HUVECs cocultures
AU - Ma, J.
AU - Yang, F.
AU - Both, S.K.
AU - Prins, H.J.
AU - Helder, M.N.
AU - Pan, J.
AU - Cui, F.Z.
AU - Jansen, J.A.
AU - van den Beucken, J.J.J.P.
PY - 2014
Y1 - 2014
N2 - The aim of this study was to comparatively evaluate the angiogenic capacity of cocultures using either human bone marrow- or human adipose tissue-derived mesenchymal stem cells (MSCs) (BM- or AT-MSCs) with human umbilical vein endothelial cells (HUVECs) both in vitro and in vivo at early time points (i.e. days 3 and 7). In vitro, cells were either monocultured (i.e. BM-MSCs, AT-MSCs or HUVECs) or cocultured (i.e. BM-MSCs/HUVECs and AT-MSCs/HUVECs) on Thermanox® (2-dimensional, 2D) or in collagen gels (3-dimensional, 3D). For the in vivo experiment, cells (cocultures) were embedded in collagen gels and implanted subcutaneously in nude mice. For both in vitro and in vivo experiments, samples were collected on days 3 and 7 and histologically processed for hematoxylin-eosin and platelet endothelial cell adhesion molecule (PECAM-1; CD31) staining. For in vivo samples, quantitative parameters for evaluating angiogenesis included CD31-positive staining percentage, total vessel-like structure (VLS) area percentage, VLS density, and average VLS area (i.e. the size of per VLS). In vitro results showed the formation of VLS in both cocultures, while none of the monocultures showed VLS formation, irrespective of 2D or 3D culture condition. Although VLS formation occurred after in vivo implantation, no significant difference in angiogenic capacity was observed between the two cocultures, either on day 3 or on day 7. Further, VLS density decreased and anastomosis of the new human vessels with the murine host vasculature occurred over time. In conclusion, this study demonstrated that AT-MSCs/HUVECs and BM-MSCs/HUVECs have equal angiogenic capacity both in vitro and in vivo, and that vessels from donor origin can anastomose with the host vasculature within seven days of implantation.
AB - The aim of this study was to comparatively evaluate the angiogenic capacity of cocultures using either human bone marrow- or human adipose tissue-derived mesenchymal stem cells (MSCs) (BM- or AT-MSCs) with human umbilical vein endothelial cells (HUVECs) both in vitro and in vivo at early time points (i.e. days 3 and 7). In vitro, cells were either monocultured (i.e. BM-MSCs, AT-MSCs or HUVECs) or cocultured (i.e. BM-MSCs/HUVECs and AT-MSCs/HUVECs) on Thermanox® (2-dimensional, 2D) or in collagen gels (3-dimensional, 3D). For the in vivo experiment, cells (cocultures) were embedded in collagen gels and implanted subcutaneously in nude mice. For both in vitro and in vivo experiments, samples were collected on days 3 and 7 and histologically processed for hematoxylin-eosin and platelet endothelial cell adhesion molecule (PECAM-1; CD31) staining. For in vivo samples, quantitative parameters for evaluating angiogenesis included CD31-positive staining percentage, total vessel-like structure (VLS) area percentage, VLS density, and average VLS area (i.e. the size of per VLS). In vitro results showed the formation of VLS in both cocultures, while none of the monocultures showed VLS formation, irrespective of 2D or 3D culture condition. Although VLS formation occurred after in vivo implantation, no significant difference in angiogenic capacity was observed between the two cocultures, either on day 3 or on day 7. Further, VLS density decreased and anastomosis of the new human vessels with the murine host vasculature occurred over time. In conclusion, this study demonstrated that AT-MSCs/HUVECs and BM-MSCs/HUVECs have equal angiogenic capacity both in vitro and in vivo, and that vessels from donor origin can anastomose with the host vasculature within seven days of implantation.
U2 - https://doi.org/10.1088/1758-5082/6/1/015005
DO - https://doi.org/10.1088/1758-5082/6/1/015005
M3 - Article
C2 - 24429700
SN - 1758-5082
VL - 6
SP - 015005
JO - BIOFABRICATION
JF - BIOFABRICATION
IS - 1
M1 - 015005
ER -