TY - JOUR
T1 - Insertion of two animo acids combined with changes in reverse transcriptase containing tyrosine-215 of HIV-1 resistant to multiple nucleoside analogs
AU - De Jong, J. Jacques
AU - Goudsmit, Jaap
AU - Lukashov, Vladimir V.
AU - Hillebrand, Milly E.
AU - Baan, Elly
AU - Huismans, Raymond
AU - Danner, Sven A.
AU - Ten Veen, Jacobus H.
AU - De Wolf, Frank
AU - Jurriaans, Suzanne
PY - 1999
Y1 - 1999
N2 - Objective: To identify genotypic drug resistance patterns of HIV-1 in patients who were extensively pretreated with anti-HIV drugs and not responding to their current antiretroviral combination therapy. Methods: Drug susceptibility of the viruses was tested by a phenotypic recombinant virus assay. Genotypic analysis of HIV resistance was performed by sequencing of the amino-terminal part of the corresponding reverse transcriptase (RT) gene (amino acids 1-280) for serum-derived and recombinant viruses. Results: Among viruses from 92 patients studied, three (3%) viruses contained a T215Y amino-acid change as well as a previously unseen combination of an aminoacid change at codon 67 (N→E/S) and a two amino-acid insertion between codons 68 and 69 of the RT gene of HIV-1. Phenotypic resistance analysis showed high levels of resistance to zidovudine, lamivudine and stavudine (in all patients) and moderate levels of resistance to didanosine and zalcitabine (in two patients), whereas neither serum-derived nor recombinant viruses contained previously known amino-acid changes conferring resistance to didanosine, zalcitabine, lamivudine and stavudine. However, all recombinant viruses contained an insertion of two amino acids between codons 68 and 69 of RT as well as an amino-acid change at codon 67, as was seen in the serum-derived viruses. Conclusions: Antiretroviral therapy including zidovudine may yield replicating viruses with a two amino-acid insertion in RT in combination with amino-acid changes at codons 67 and 215, which are highly resistant to lamivudine and stavudine on top of zidovudine and have unpredictable susceptibility to didanosine and zalcitabine despite lack of previously reported corresponding resistance-associated amino-acid changes. It is currently unknown what regimens can induce the emergence of this type of multidrug-resistant viruses. This will only be elucidated when resistance assays are capable of detecting these mutants.
AB - Objective: To identify genotypic drug resistance patterns of HIV-1 in patients who were extensively pretreated with anti-HIV drugs and not responding to their current antiretroviral combination therapy. Methods: Drug susceptibility of the viruses was tested by a phenotypic recombinant virus assay. Genotypic analysis of HIV resistance was performed by sequencing of the amino-terminal part of the corresponding reverse transcriptase (RT) gene (amino acids 1-280) for serum-derived and recombinant viruses. Results: Among viruses from 92 patients studied, three (3%) viruses contained a T215Y amino-acid change as well as a previously unseen combination of an aminoacid change at codon 67 (N→E/S) and a two amino-acid insertion between codons 68 and 69 of the RT gene of HIV-1. Phenotypic resistance analysis showed high levels of resistance to zidovudine, lamivudine and stavudine (in all patients) and moderate levels of resistance to didanosine and zalcitabine (in two patients), whereas neither serum-derived nor recombinant viruses contained previously known amino-acid changes conferring resistance to didanosine, zalcitabine, lamivudine and stavudine. However, all recombinant viruses contained an insertion of two amino acids between codons 68 and 69 of RT as well as an amino-acid change at codon 67, as was seen in the serum-derived viruses. Conclusions: Antiretroviral therapy including zidovudine may yield replicating viruses with a two amino-acid insertion in RT in combination with amino-acid changes at codons 67 and 215, which are highly resistant to lamivudine and stavudine on top of zidovudine and have unpredictable susceptibility to didanosine and zalcitabine despite lack of previously reported corresponding resistance-associated amino-acid changes. It is currently unknown what regimens can induce the emergence of this type of multidrug-resistant viruses. This will only be elucidated when resistance assays are capable of detecting these mutants.
KW - Antiretroviral therapy
KW - Drug-resistant mutations
KW - Multidrug resistance
KW - Nucleoside reverse transcriptase inhibitors
KW - Zidovudine
UR - http://www.scopus.com/inward/record.url?scp=0033552832&partnerID=8YFLogxK
U2 - https://doi.org/10.1097/00002030-199901140-00010
DO - https://doi.org/10.1097/00002030-199901140-00010
M3 - Article
C2 - 10207547
SN - 0269-9370
VL - 13
SP - 75
EP - 80
JO - AIDS (London, England)
JF - AIDS (London, England)
IS - 1
ER -