1 Citation (Scopus)

Abstract

Purpose of review Critical care medicine revolves around syndromes, such as acute respiratory distress syndrome (ARDS), sepsis and acute kidney injury. Few interventions have shown to be effective in large clinical trials, likely because of between-patient heterogeneity. Translational evidence suggests that more homogeneous biological subgroups can be identified and that differential treatment effects exist. Integrating biological considerations into clinical trial design is therefore an important frontier of critical care research. Recent findings The pathophysiology of critical care syndromes involves a multiplicity of processes, which emphasizes the difficulty of integrating biology into clinical trial design. Biological assessment can be integrated into clinical trials using predictive enrichment at trial inclusion, time-dependent variation to better understand treatment effects and biological markers as surrogate outcomes. Summary Integrating our knowledge on biological heterogeneity into clinical trial design, which has revolutionized other medical fields, could serve as a solution to implement personalized treatment in critical care syndromes. Changing the trial design by using predictive enrichment, incorporation of the evaluation of time-dependent changes and biological markers as surrogate outcomes may improve the likelihood of detecting a beneficial effect from targeted therapeutic interventions and the opportunity to test multiple lines of treatment per patient.
Original languageEnglish
Pages (from-to)26-33
Number of pages8
JournalCurrent Opinion in Critical Care
Volume29
Issue number1
DOIs
Publication statusPublished - 1 Feb 2023

Keywords

  • acute respiratory distress syndrome
  • critical care
  • precision medicine
  • translational medicine

Cite this