Abstract

Objectives: Hormone measurements using automated immunoassays (IAs) can be affected by the sample matrix. Liquid chromatography tandem-mass spectrometry (LC-MS/MS) is less affected by these matrix effects. In clinical laboratories, testosterone, cortisol and, free thyroxine (FT4) are often measured using IAs. Renal failure alters serum composition in blood samples from people undergoing hemodialysis (HDp) and have, therefore, a complex serum constitution compared to healthy controls (HC). The goal of this study was to investigate the accuracy of testosterone, cortisol, and FT4 measurements in samples of HDp and to get more insight in the interfering factors. Methods: Thirty serum samples from HDp and HC were collected to measure testosterone, cortisol, and FT4 using a well standardized isotope dilution (ID)-LC-MS/MS method and 5 commercially available automated IAs (Alinity, Atellica, Cobas, Lumipulse, UniCel DXI). Method comparisons between LC-MS/MS and IAs were performed using both HDp and HC samples. Results: Average bias from the LC-MS/MS was for testosterone, cortisol, and FT4 immunoassays respectively up to 92, 7-47 and 16-27% more in HDp than in HC samples and was IA dependent. FT4 IA results were falsely decreased in HDp samples, whereas cortisol and testosterone concentrations in females were predominantly falsely increased. Correlation coefficients between LC-MS/MS and IA results were lower in HDp compared to HC samples. Conclusions: Several IAs for testosterone (in women), cortisol, and FT4 are less reliable in the altered serum matrix of samples of HDp than in HC. Medical and laboratory specialists should be aware of these pitfalls in this specific population.

Original languageEnglish
Pages (from-to)1436-1445
Number of pages10
JournalClinical chemistry and laboratory medicine
Volume61
Issue number8
Early online date2023
DOIs
Publication statusPublished - 1 Jul 2023

Keywords

  • cortisol
  • free thyroxine
  • hemodialysis
  • immunoassay
  • mass spectrometry
  • testosterone

Cite this