TY - JOUR
T1 - Lysosomal Signaling Licenses Embryonic Stem Cell Differentiation via Inactivation of Tfe3
AU - Villegas, Florian
AU - Lehalle, Daphné
AU - Mayer, Daniela
AU - Rittirsch, Melanie
AU - Stadler, Michael B
AU - Zinner, Marietta
AU - Olivieri, Daniel
AU - Vabres, Pierre
AU - Duplomb-Jego, Laurence
AU - De Bont, Eveline S J M
AU - Duffourd, Yannis
AU - Duijkers, Floor
AU - Avila, Magali
AU - Geneviève, David
AU - Houcinat, Nada
AU - Jouan, Thibaud
AU - Kuentz, Paul
AU - Lichtenbelt, Klaske D
AU - Thauvin-Robinet, Christel
AU - St-Onge, Judith
AU - Thevenon, Julien
AU - van Gassen, Koen L I
AU - van Haelst, Mieke
AU - van Koningsbruggen, Silvana
AU - Hess, Daniel
AU - Smallwood, Sebastien A
AU - Rivière, Jean-Baptiste
AU - Faivre, Laurence
AU - Betschinger, Joerg
N1 - Copyright © 2018 Elsevier Inc. All rights reserved.
PY - 2019/2/7
Y1 - 2019/2/7
N2 - Self-renewal and differentiation of pluripotent murine embryonic stem cells (ESCs) is regulated by extrinsic signaling pathways. It is less clear whether cellular metabolism instructs developmental progression. In an unbiased genome-wide CRISPR/Cas9 screen, we identified components of a conserved amino-acid-sensing pathway as critical drivers of ESC differentiation. Functional analysis revealed that lysosome activity, the Ragulator protein complex, and the tumor-suppressor protein Folliculin enable the Rag GTPases C and D to bind and seclude the bHLH transcription factor Tfe3 in the cytoplasm. In contrast, ectopic nuclear Tfe3 represses specific developmental and metabolic transcriptional programs that are associated with peri-implantation development. We show differentiation-specific and non-canonical regulation of Rag GTPase in ESCs and, importantly, identify point mutations in a Tfe3 domain required for cytoplasmic inactivation as potentially causal for a human developmental disorder. Our work reveals an instructive and biomedically relevant role of metabolic signaling in licensing embryonic cell fate transitions.
AB - Self-renewal and differentiation of pluripotent murine embryonic stem cells (ESCs) is regulated by extrinsic signaling pathways. It is less clear whether cellular metabolism instructs developmental progression. In an unbiased genome-wide CRISPR/Cas9 screen, we identified components of a conserved amino-acid-sensing pathway as critical drivers of ESC differentiation. Functional analysis revealed that lysosome activity, the Ragulator protein complex, and the tumor-suppressor protein Folliculin enable the Rag GTPases C and D to bind and seclude the bHLH transcription factor Tfe3 in the cytoplasm. In contrast, ectopic nuclear Tfe3 represses specific developmental and metabolic transcriptional programs that are associated with peri-implantation development. We show differentiation-specific and non-canonical regulation of Rag GTPase in ESCs and, importantly, identify point mutations in a Tfe3 domain required for cytoplasmic inactivation as potentially causal for a human developmental disorder. Our work reveals an instructive and biomedically relevant role of metabolic signaling in licensing embryonic cell fate transitions.
UR - https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85060114283&origin=inward
UR - https://www.ncbi.nlm.nih.gov/pubmed/30595499
U2 - https://doi.org/10.1016/j.stem.2018.11.021
DO - https://doi.org/10.1016/j.stem.2018.11.021
M3 - Article
C2 - 30595499
SN - 1934-5909
VL - 24
SP - 257-270.e8
JO - Cell Stem Cell
JF - Cell Stem Cell
IS - 2
ER -