Abstract
Dried blood spot succinylacetone (SA) is often used as a biomarker for newborn screening (NBS) for tyrosinemia type 1 (TT1). However, false-positive SA results are often observed. Elevated SA may also be due to maleylacetoacetate isomerase deficiency (MAAI-D), which appears to be clinically insignificant. This study investigated whether urine organic acid (uOA) and quantitative urine maleic acid (Q-uMA) analyses can distinguish between TT1 and MAAI-D. We reevaluated/measured uOA (GC–MS) and/or Q-uMA (LC–MS/MS) in available urine samples of nine referred newborns (2 TT1, 7 false-positive), eight genetically confirmed MAAI-D children, and 66 controls. Maleic acid was elevated in uOA of 5/7 false-positive newborns and in the three available samples of confirmed MAAI-D children, but not in TT1 patients. Q-uMA ranged from not detectable to 1.16 mmol/mol creatinine in controls (n = 66) and from 0.95 to 192.06 mmol/mol creatinine in false-positive newborns and MAAI-D children (n = 10). MAAI-D was genetically confirmed in 4/7 false-positive newborns, all with elevated Q-uMA, and rejected in the two newborns with normal Q-uMA. No sample was available for genetic analysis of the last false-positive infant with elevated Q-uMA. Our study shows that MAAI-D is a recognizable cause of false-positive TT1 NBS results. Elevated urine maleic acid excretion seems highly effective in discriminating MAAI-D from TT1.
Original language | English |
---|---|
Pages (from-to) | 1104-1113 |
Number of pages | 10 |
Journal | Journal of inherited metabolic disease |
Volume | 46 |
Issue number | 6 |
Early online date | 2023 |
DOIs | |
Publication status | Published - Nov 2023 |
Keywords
- maleic acid
- maleylacetoacetate isomerase deficiency
- newborn screening
- succinylacetone
- tyrosinemia type 1