Mendelian randomization study of adiposity-related traits and risk of breast, ovarian, prostate, lung and colorectal cancer

On behalf of: the Colorectal Transdisciplinary Study (CORECT), Discovery, Biology and Risk of Inherited Variants in Breast Cancer (DRIVE), Elucidating Loci Involved in Prostate Cancer Susceptibility (ELLIPSE), Follow-up of Ovarian Cancer Genetic Association and Interaction Studies (FOCI), Transdisciplinary Research in Cancer of the Lung (TRICL)

Research output: Contribution to journalArticleAcademicpeer-review

105 Citations (Scopus)


Background: Adiposity traits have been associated with risk of many cancers in observational studies, but whether these associations are causal is unclear. Mendelian randomization (MR) uses genetic predictors of risk factors as instrumental variables to eliminate reverse causation and reduce confounding bias. We performed MR analyses to assess the possible causal relationship of birthweight, childhood and adult body mass index (BMI), and waist-hip ratio (WHR) on the risks of breast, ovarian, prostate, colorectal and lung cancers. Methods: We tested the association between genetic risk scores and each trait using summary statistics from published genome-wide association studies (GWAS) and from 51 537 cancer cases and 61 600 controls in the Genetic Associations and Mechanisms in Oncology (GAME-ON) Consortium. Results: We found an inverse association between the genetic score for childhood BMI and risk of breast cancer [odds ratio (OR)=0.71 per standard deviation (s.d.) increase in childhood BMI; 95% confidence interval (CI): 0.60, 0.80; P=6.5×10-5). We also found the genetic score for adult BMI to be inversely associated with breast cancer risk (OR=0.66 per s.d. increase in BMI; 95% CI: 0.57, 0.77; P=2.5×10-7), and positively associated with ovarian cancer (OR=1.35; 95% CI: 1.05, 1.72; P=0.017), lung cancer (OR=1.27; 95% CI: 1.09, 1.49; P=2.9×10-3) and colorectal cancer (OR=1.39; 95% CI: 1.06, 1.82, P=0.016). The inverse association between genetically predicted adult BMI and breast cancer risk remained even after adjusting for directional pleiotropy via MR-Egger regression. Conclusions: Findings from this study provide additional understandings of the complex relationship between adiposity and cancer risks. Our results for breast and lung cancer are particularly interesting, given previous reports of effect heterogeneity by menopausal status and smoking status.

Original languageEnglish
Pages (from-to)896-908
Number of pages13
JournalInternational journal of epidemiology
Issue number3
Publication statusPublished - 1 Jun 2016


  • Body mass index
  • Cancer risk
  • Mendelian randomization
  • Post-GWAS study
  • Waist-to-hip ratio

Cite this