TY - JOUR
T1 - Monophasic action potentials and activation recovery intervals as measures of ventricular action potential duration: experimental evidence to resolve some controversies
AU - Coronel, Ruben
AU - de Bakker, Jacques M. T.
AU - Wilms-Schopman, Francien J. G.
AU - Opthof, Tobias
AU - Linnenbank, André C.
AU - Belterman, Charly N.
AU - Janse, Michiel J.
PY - 2006
Y1 - 2006
N2 - BACKGROUND: Activation recovery intervals (ARIs) and monophasic action potential (MAP) duration are used as measures of action potential duration in beating hearts. However, controversies exist concerning the correct way to record MAPs or calculate ARIs. We have addressed these issues experimentally. OBJECTIVES: To experimentally address the controversies concerning the correct way to record MAPs or calculate ARIs. METHODS: Left ventricular local electrograms were recorded in isolated pig hearts with an exploring electrode grid, with a KCl reference electrode on the left ventricular myocardium, the aortic root, or the left atrium. Local activation was determined from calculated Laplacian electrograms. RESULTS: With the KCl electrode on the aortic root, local electrograms represented local activation. However, with the KCl electrode on the myocardium remote from the exploring electrode, a combined electrogram emerged consisting of local activation recorded from the grid and remote activation recorded from the reference electrode. The remote, inverted monophasic component did not show propagation and did not correlate with the Laplacian complex. When the KCl electrode was placed on the atrium during AV block, remote atrial monophasic components were completely dissociated from local, ventricular deflections. At left ventricular sites with a positive T wave, the Laplacian signal showed that the end of the T wave was caused by remote repolarization. During cooling-induced regional action potential prolongation, the T wave became negative, whereby the positive flank of the T wave remained correlated with repolarization (recorded with a MAP at the same site). CONCLUSIONS: MAPs are recorded from the depolarizing electrode. In both negative and positive T waves, the moment of maximum dV/dt corresponds to local repolarization
AB - BACKGROUND: Activation recovery intervals (ARIs) and monophasic action potential (MAP) duration are used as measures of action potential duration in beating hearts. However, controversies exist concerning the correct way to record MAPs or calculate ARIs. We have addressed these issues experimentally. OBJECTIVES: To experimentally address the controversies concerning the correct way to record MAPs or calculate ARIs. METHODS: Left ventricular local electrograms were recorded in isolated pig hearts with an exploring electrode grid, with a KCl reference electrode on the left ventricular myocardium, the aortic root, or the left atrium. Local activation was determined from calculated Laplacian electrograms. RESULTS: With the KCl electrode on the aortic root, local electrograms represented local activation. However, with the KCl electrode on the myocardium remote from the exploring electrode, a combined electrogram emerged consisting of local activation recorded from the grid and remote activation recorded from the reference electrode. The remote, inverted monophasic component did not show propagation and did not correlate with the Laplacian complex. When the KCl electrode was placed on the atrium during AV block, remote atrial monophasic components were completely dissociated from local, ventricular deflections. At left ventricular sites with a positive T wave, the Laplacian signal showed that the end of the T wave was caused by remote repolarization. During cooling-induced regional action potential prolongation, the T wave became negative, whereby the positive flank of the T wave remained correlated with repolarization (recorded with a MAP at the same site). CONCLUSIONS: MAPs are recorded from the depolarizing electrode. In both negative and positive T waves, the moment of maximum dV/dt corresponds to local repolarization
U2 - https://doi.org/10.1016/j.hrthm.2006.05.027
DO - https://doi.org/10.1016/j.hrthm.2006.05.027
M3 - Article
C2 - 16945799
SN - 1547-5271
VL - 3
SP - 1043
EP - 1050
JO - Heart Rhythm
JF - Heart Rhythm
IS - 9
ER -