TY - JOUR
T1 - Myocardial perfusion in excessively trabeculated hearts
T2 - Insights from imaging and histological studies
AU - Jensen, Bjarke
AU - Petersen, Steffen E.
AU - Coolen, Bram F.
N1 - Funding Information: Steffen E Petersen acknowledges support from the National Institute for Health and Care Research Barts Biomedical Research Centre . Publisher Copyright: © 2022 The Authors
PY - 2022
Y1 - 2022
N2 - In gestation, the coronary circulation develops initially in the compact layer and it expands only in fetal development to the trabeculations. Conflicting data have been published as to whether the trabecular layer is hypoperfused relative to the compact wall after birth. If so, this could explain the poor pump function in patients with left ventricular excessive trabeculation, or so-called noncompaction. Here, we review direct and indirect assessments of myocardial perfusion in normal and excessively trabeculated hearts by in vivo imaging by magnetic resonance imaging (MRI), positron emission tomography (PET)/single photon emission computed tomography (SPECT), and echocardiography in addition to histology, injections of labelled microspheres in animals, and electrocardiography. In MRI, PET/SPECT, and echocardiography, flow of blood or myocardial uptake of blood-borne tracer molecules are measured. The imaged trabecular layer comprises trabeculations and blood-filled intertrabecular spaces whereas the compact layer comprises tissue only, and spatio-temporal resolution likely affects measurements of myocardial perfusion differently in the two layers. Overall, studies measuring myocardial uptake of tracers (PET/SPECT) suggest trabecular hypoperfusion. Studies measuring the quantity of blood (echocardiography and MRI) suggest trabecular hyperperfusion. These conflicting results are reconciled if the low uptake from intertrabecular spaces in PET/SPECT and the high signal from intertrabecular spaces in MRI and echocardiography are considered opposite biases. Histology on human hearts reveal a similar capillary density of trabecular and compact myocardium. Injections of labelled microspheres in animals reveal a similar perfusion of trabecular and compact myocardium. In conclusion, trabecular and compact muscle are likely equally perfused in normal hearts and most cases of excessive trabeculation.
AB - In gestation, the coronary circulation develops initially in the compact layer and it expands only in fetal development to the trabeculations. Conflicting data have been published as to whether the trabecular layer is hypoperfused relative to the compact wall after birth. If so, this could explain the poor pump function in patients with left ventricular excessive trabeculation, or so-called noncompaction. Here, we review direct and indirect assessments of myocardial perfusion in normal and excessively trabeculated hearts by in vivo imaging by magnetic resonance imaging (MRI), positron emission tomography (PET)/single photon emission computed tomography (SPECT), and echocardiography in addition to histology, injections of labelled microspheres in animals, and electrocardiography. In MRI, PET/SPECT, and echocardiography, flow of blood or myocardial uptake of blood-borne tracer molecules are measured. The imaged trabecular layer comprises trabeculations and blood-filled intertrabecular spaces whereas the compact layer comprises tissue only, and spatio-temporal resolution likely affects measurements of myocardial perfusion differently in the two layers. Overall, studies measuring myocardial uptake of tracers (PET/SPECT) suggest trabecular hypoperfusion. Studies measuring the quantity of blood (echocardiography and MRI) suggest trabecular hyperperfusion. These conflicting results are reconciled if the low uptake from intertrabecular spaces in PET/SPECT and the high signal from intertrabecular spaces in MRI and echocardiography are considered opposite biases. Histology on human hearts reveal a similar capillary density of trabecular and compact myocardium. Injections of labelled microspheres in animals reveal a similar perfusion of trabecular and compact myocardium. In conclusion, trabecular and compact muscle are likely equally perfused in normal hearts and most cases of excessive trabeculation.
KW - Blood flow
KW - Cardiomyopathy
KW - Noncompaction
UR - http://www.scopus.com/inward/record.url?scp=85144753667&partnerID=8YFLogxK
U2 - https://doi.org/10.1016/j.jjcc.2022.11.013
DO - https://doi.org/10.1016/j.jjcc.2022.11.013
M3 - Review article
C2 - 36481300
SN - 0914-5087
JO - Journal of cardiology
JF - Journal of cardiology
ER -