TY - JOUR
T1 - Neuroaxonal and Glial Markers in Patients of the Same Age With Multiple Sclerosis
AU - Loonstra, Floor C
AU - de Ruiter, Lodewijk R J
AU - Koel-Simmelink, Marleen J A
AU - Schoonheim, Menno M
AU - Strijbis, Eva M M
AU - Moraal, Bastiaan
AU - Barkhof, Frederik
AU - Uitdehaag, Bernard M J
AU - Teunissen, Charlotte
AU - Killestein, Joep
N1 - Publisher Copyright: Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.
PY - 2023/3/1
Y1 - 2023/3/1
N2 - BACKGROUND AND OBJECTIVES: The specificity of novel blood biomarkers for multiple sclerosis (MS)-related neurodegeneration is unclear because neurodegeneration also occurs during normal aging. To understand which aspects of neurodegeneration the serum biomarkers neurofilament light (sNfL), serum glial fibrillary acidic protein (sGFAP), and serum contactin-1 (sCNTN1) reflect, we here explore their cross-sectional association with disability outcome measures and MRI volumes in a unique cohort of people with MS (PwMS) of the same age. METHODS: sNfL, sGFAP (both singe-molecule array technology) and sCNTN1 (Luminex) were measured in serum samples of 288 PwMS and 125 healthy controls (HCs) of the Project Y cohort, a population-based cross-sectional study of PwMS born in the Netherlands in 1966 and age-matched HC. RESULTS: sNfL (9.83 pg/mL [interquartile range {IQR}: 7.8-12.0]) and sGFAP (63.7 pg/mL [IQR: 48.5-84.5]) were higher in PwMS compared with HC (sNfL: 8.8 pg/mL [IQR: 7.0-10.5]; sGFAP: 51.7 pg/mL [IQR: 40.1-68.3]) (p < 0.001), whereas contactin-1 (7,461.3 pg/mL [IQR: 5,951.8-9,488.6]) did not significantly differ between PwMS compared with HC (7,891.2 pg/mL [IQR: 6,120.0-10,265.8]) (p = 0.068). sNfL and sGFAP levels were 1.2-fold higher in secondary progressive patients (SPMS) compared with relapsing remitting patients (p = 0.009 and p = 0.043). Stratified by MS subtype, no relations were seen for CNTN1, whereas sNfL and sGFAP correlated with the Expanded Disability Status Scale (ρ = 0.43 and ρ = 0.39), Nine-Hole Peg Test, Timed 25-Foot Walk Test, and Symbol Digit Modalities Test (average ρ = 0.38) only in patients with SPMS. Parallel to these clinical findings, correlations were only found for sNfL and sGFAP with MRI volumes. The strongest correlations were observed between sNfL and thalamic volume (ρ = -0.52) and between sGFAP with deep gray matter volume (ρ = - 0.56) in primary progressive patients. DISCUSSION: In our cohort of patients of the same age, we report consistent correlations of sNfL and sGFAP with a range of metrics, especially in progressive MS, whereas contactin-1 was not related to clinical or MRI measures. This demonstrates the potential of sNfL and sGFAP as complementary biomarkers of neurodegeneration, reflected by disability, in progressive MS.
AB - BACKGROUND AND OBJECTIVES: The specificity of novel blood biomarkers for multiple sclerosis (MS)-related neurodegeneration is unclear because neurodegeneration also occurs during normal aging. To understand which aspects of neurodegeneration the serum biomarkers neurofilament light (sNfL), serum glial fibrillary acidic protein (sGFAP), and serum contactin-1 (sCNTN1) reflect, we here explore their cross-sectional association with disability outcome measures and MRI volumes in a unique cohort of people with MS (PwMS) of the same age. METHODS: sNfL, sGFAP (both singe-molecule array technology) and sCNTN1 (Luminex) were measured in serum samples of 288 PwMS and 125 healthy controls (HCs) of the Project Y cohort, a population-based cross-sectional study of PwMS born in the Netherlands in 1966 and age-matched HC. RESULTS: sNfL (9.83 pg/mL [interquartile range {IQR}: 7.8-12.0]) and sGFAP (63.7 pg/mL [IQR: 48.5-84.5]) were higher in PwMS compared with HC (sNfL: 8.8 pg/mL [IQR: 7.0-10.5]; sGFAP: 51.7 pg/mL [IQR: 40.1-68.3]) (p < 0.001), whereas contactin-1 (7,461.3 pg/mL [IQR: 5,951.8-9,488.6]) did not significantly differ between PwMS compared with HC (7,891.2 pg/mL [IQR: 6,120.0-10,265.8]) (p = 0.068). sNfL and sGFAP levels were 1.2-fold higher in secondary progressive patients (SPMS) compared with relapsing remitting patients (p = 0.009 and p = 0.043). Stratified by MS subtype, no relations were seen for CNTN1, whereas sNfL and sGFAP correlated with the Expanded Disability Status Scale (ρ = 0.43 and ρ = 0.39), Nine-Hole Peg Test, Timed 25-Foot Walk Test, and Symbol Digit Modalities Test (average ρ = 0.38) only in patients with SPMS. Parallel to these clinical findings, correlations were only found for sNfL and sGFAP with MRI volumes. The strongest correlations were observed between sNfL and thalamic volume (ρ = -0.52) and between sGFAP with deep gray matter volume (ρ = - 0.56) in primary progressive patients. DISCUSSION: In our cohort of patients of the same age, we report consistent correlations of sNfL and sGFAP with a range of metrics, especially in progressive MS, whereas contactin-1 was not related to clinical or MRI measures. This demonstrates the potential of sNfL and sGFAP as complementary biomarkers of neurodegeneration, reflected by disability, in progressive MS.
KW - Biomarkers
KW - Contactins
KW - Cross-Sectional Studies
KW - Humans
KW - Multiple Sclerosis, Chronic Progressive/diagnostic imaging
KW - Multiple Sclerosis/diagnostic imaging
KW - Neurofilament Proteins
UR - http://www.scopus.com/inward/record.url?scp=85144590980&partnerID=8YFLogxK
U2 - https://doi.org/10.1212/NXI.0000000000200078
DO - https://doi.org/10.1212/NXI.0000000000200078
M3 - Article
C2 - 36543540
VL - 10
JO - Neurology neuroimmunology & neuroinflammation
JF - Neurology neuroimmunology & neuroinflammation
SN - 2332-7812
IS - 2
ER -