TY - JOUR
T1 - Omega-hydroxylation of phytanic acid in rat liver microsomes: implications for Refsum disease
AU - Komen, J. C.
AU - Duran, M.
AU - Wanders, R. J. A.
PY - 2004
Y1 - 2004
N2 - The 3-methyl-branched fatty acid phytanic acid is degraded by the peroxisomal alpha-oxidation route because the 3-methyl group blocks beta-oxidation. In adult Refsum disease (ARD), peroxisomal alpha-oxidation is defective, which is caused by mutations in the gene coding for phytanoyl-CoA hydroxylase in the majority of ARD patients. As a consequence, phytanic acid accumulates in tissues and body fluids. This study focuses on an alternative route of phytanic acid degradation, omega-oxidation. The first step in omega-oxidation is hydroxylation at the omega-end of the fatty acid, catalyzed by a member of the cytochrome P450 multienzyme family. To study this first step, the formation of hydroxylated intermediates was studied in rat liver microsomes incubated with phytanic acid and NADPH. Two hydroxylated metabolites of phytanic acid were formed, omega- and (omega-1)-hydroxyphytanic acid (ratio of formation, 5:1). The formation of omega-hydroxyphytanic acid was NADPH dependent and inhibited by imidazole derivatives. These results indicate that phytanic acid undergoes omega-hydroxylation in rat liver microsomes and that an isoform of cytochrome P450 catalyzes the first step of phytanic acid omega-oxidation
AB - The 3-methyl-branched fatty acid phytanic acid is degraded by the peroxisomal alpha-oxidation route because the 3-methyl group blocks beta-oxidation. In adult Refsum disease (ARD), peroxisomal alpha-oxidation is defective, which is caused by mutations in the gene coding for phytanoyl-CoA hydroxylase in the majority of ARD patients. As a consequence, phytanic acid accumulates in tissues and body fluids. This study focuses on an alternative route of phytanic acid degradation, omega-oxidation. The first step in omega-oxidation is hydroxylation at the omega-end of the fatty acid, catalyzed by a member of the cytochrome P450 multienzyme family. To study this first step, the formation of hydroxylated intermediates was studied in rat liver microsomes incubated with phytanic acid and NADPH. Two hydroxylated metabolites of phytanic acid were formed, omega- and (omega-1)-hydroxyphytanic acid (ratio of formation, 5:1). The formation of omega-hydroxyphytanic acid was NADPH dependent and inhibited by imidazole derivatives. These results indicate that phytanic acid undergoes omega-hydroxylation in rat liver microsomes and that an isoform of cytochrome P450 catalyzes the first step of phytanic acid omega-oxidation
U2 - https://doi.org/10.1194/jlr.M400064-JLR200
DO - https://doi.org/10.1194/jlr.M400064-JLR200
M3 - Article
C2 - 15102880
SN - 0022-2275
VL - 45
SP - 1341
EP - 1346
JO - Journal of Lipid Research
JF - Journal of Lipid Research
IS - 7
ER -