Overexpression of carbamoyl-phosphate synthase 1 significantly improves ureagenesis of human liver HepaRG cells only when cultured under shaking conditions

Aziza A. A. Adam, Vincent A. van der Mark, Jos P. N. Ruiter, Ronald J. A. Wanders, Ronald P. J. Oude Elferink, Robert A. F. M. Chamuleau, Ruurdtje Hoekstra

Research output: Contribution to journalArticleAcademicpeer-review

4 Citations (Scopus)

Abstract

Hyperammonemia is an important contributing factor to hepatic encephalopathy in end-stage liver failure patients. Therefore reducing hyperammonemia is a requisite of bioartificial liver support (BAL). Ammonia elimination by human liver HepaRG cells occurs predominantly through reversible fixation into amino acids, whereas the irreversible conversion into urea is limited. Compared to human liver, the expression and activity of the three urea cycle (UC) enzymes carbamoyl-phosphate synthase1 (CPS1), ornithine transcarbamoylase (OTC) and arginase1, are low. To improve HepaRG cells as BAL biocomponent, its rate limiting factor of the UC was determined under two culture conditions: static and dynamic medium flow (DMF) achieved by shaking. HepaRG cells increasingly converted escalating arginine doses into urea, indicating that arginase activity is not limiting ureagenesis. Neither was OTC activity, as a stable HepaRG line overexpressing OTC exhibited a 90- and 15.7-fold upregulation of OTC transcript and activity levels, without improvement in ureagenesis. However, a stable HepaRG line overexpressing CPS1 showed increased mitochondrial stress and reduced hepatic differentiation without promotion of the CPS1 transcript level or ureagenesis under static-culturing conditions, yet, it exhibited a 4.3-fold increased ureagenesis under DMF. This was associated with increased CPS1 transcript and activity levels amounting to >2-fold, increased mitochondrial abundance and hepatic differentiation. Unexpectedly, the transcript levels of several other UC genes increased up to 6.8-fold. We conclude that ureagenesis can be improved in HepaRG cells by CPS1 overexpression, however, only in combination with DMF-culturing, suggesting that both the low CPS1 level and static-culturing, possibly due to insufficient mitochondria, are limiting UC.
Original languageEnglish
Pages (from-to)298-308
JournalMitochondrion
Volume47
DOIs
Publication statusPublished - 2019

Cite this