Abstract
Original language | English |
---|---|
Pages (from-to) | 65-75 |
Number of pages | 11 |
Journal | Acta anaesthesiologica Scandinavica |
Volume | 66 |
Issue number | 1 |
Early online date | 8 Oct 2021 |
DOIs | |
Publication status | Published - Jan 2022 |
Keywords
- COVID-19
- corona virus
- intensive care
- mechanical ventilation
- respiratory failure
Access to Document
Other files and links
Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Acta anaesthesiologica Scandinavica, Vol. 66, No. 1, 01.2022, p. 65-75.
Research output: Contribution to journal › Article › Academic › peer-review
TY - JOUR
T1 - Rapid Evaluation of Coronavirus Illness Severity (RECOILS) in intensive care
T2 - Development and validation of a prognostic tool for in-hospital mortality
AU - Plečko, Drago
AU - Bennett, Nicolas
AU - Mårtensson, Johan
AU - Dam, Tariq A.
AU - Entjes, Robert
AU - Rettig, Thijs C. D.
AU - Dongelmans, Dave A.
AU - Boelens, Age D.
AU - Rigter, Sander
AU - Hendriks, Stefaan H. A.
AU - de Jong, Remko
AU - Kamps, Marlijn J. A.
AU - Peters, Marco
AU - Karakus, Attila
AU - Gommers, Diederik
AU - Ramnarain, Dharmanand
AU - Wils, Evert-Jan
AU - Achterberg, Sefanja
AU - Nowitzky, Ralph
AU - van den Tempel, Walter
AU - de Jager, Cornelis P. C.
AU - Nooteboom, Fleur G. C. A.
AU - Oostdijk, Evelien
AU - Koetsier, Peter
AU - Cornet, Alexander D.
AU - Reidinga, Auke C.
AU - de Ruijter, Wouter
AU - Bosman, Rob J.
AU - Frenzel, Tim
AU - Urlings-Strop, Louise C.
AU - de Jong, Paul
AU - Smit, Ellen G. M.
AU - Cremer, Olaf L.
AU - Mehagnoul-Schipper, D. Jannet
AU - Faber, Harald J.
AU - Lens, Judith
AU - Brunnekreef, Gert B.
AU - Festen-Spanjer, Barbara
AU - Dormans, Tom
AU - de Bruin, Daan P.
AU - Lalisang, Robbert C. A.
AU - Vonk, Sebastiaan J. J.
AU - Haan, Martin E.
AU - Fleuren, Lucas M.
AU - Thoral, Patrick J.
AU - Elbers, Paul W. G.
AU - Bellomo, Rinaldo
N1 - Funding Information: Authors DP and NB are supported by the grant #2017-110 of the Strategic Focal Area “Personalized Health and Related Technologies (PHRT)” of the ETH Domain for the SPHN/PHRT Driver Project ‘Personalized Swiss Sepsis Study’. Other authors are funded by their respective institutions. From collaborating hospitals having shared data: Remko van den Akker, Intensive Care, Adrz, Goes, The Netherlands, r.vandenakker@adrz.nl; Tom A. Rijpstra, MD, Department of Intensive Care, Amphia Ziekenhuis, Breda, The Netherlands, trijpstra@amphia.nl; M.C. Reuland, MD, Department of Intensive Care Medicine, Amsterdam UMC, Universiteit van Amsterdam, Amsterdam, The Netherlands, m.c.reuland@amsterdamumc.nl; Klaas Sierk Arnold, MD, Anesthesiology, Antonius Ziekenhuis Sneek, Sneek, The Netherlands, k.arnold@antonius-sneek.nl; Arend Jan Meinders, MD, Department of Internal Medicine and Intensive Care, St Antonius Hospital, Nieuwegein, The Netherlands, A.meinders@antoniusziekenhuis.nl; Nicolas Schroten, MD, Intensive Care, Albert Schweitzerziekenhuis, Dordrecht, The Netherlands, nicolasschroten@gmail.com; Laura van Manen, MD, Department of Intensive Care, BovenIJ Ziekenhuis, Amsterdam, The Netherlands, l.vanmanen@bovenij.nl; Leon Montenij, MD, PhD, Department of Anesthesiology, Pain Management and Intensive Care, Catharina Ziekenhuis Eindhoven, Eindhoven, The Netherlands, leon.montenij@catharinaziekenhuis.nl; Julia Koeter, MD, Intensive Care, Canisius Wilhelmina Ziekenhuis, Nijmegen, The Netherlands, j.koeter@cwz.nl; J.W. Fijen, MD, PhD, Department of Intensive Care, Diakonessenhuis Hospital, Utrecht, The Netherland, jwfijen@diakhuis.nl; Jasper van Bommel, MD, PhD, Department of Intensive Care, Erasmus Medical Center, Rotterdam, The Netherlands, j.vanbommel@erasmusmc.nl; Roy van den Berg, Department of Intensive Care, ETZ Tilburg, Tilburg, The Netherlands, r.vandenberg@etz.nl; Martha de Bruin, MD, Department of Intensive Care, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands, M.deBruin4@franciscus.nl; Roger van Rietschote, Business Intelligence, Haaglanden MC, Den Haag, The Netherlands, Roger.van.rietschote@haaglandenmc.nl; Ellen van Geest, Department of ICMT, Haga Ziekenhuis, Den Haag, The Netherlands, e.vangeest@hagaziekenhuis.nl; Koen S. Simons, MD, PhD, Department of Intensive Care, Jeroen Bosch Ziekenhuis, Den Bosch, The Netherlands, k.simons@jbz.nl; Anisa Hana, MD, PhD, Intensive Care, Laurentius Ziekenhuis, Roermond, The Netherlands, anisa.hana@lzr.nl; Joost Labout, MD, PhD, ICU, Maasstad Ziekenhuis Rotterdam, The Netherlands, laboutj@maasstadziekenhuis.nl; Michael Kuiper, Intensive Care, Medisch Centrum Leeuwarden, Leeuwarden, The Netherlands, m.kuiper@mcl.nl; Albertus Beishuizen, MD, PhD, Department of Intensive Care, Medisch Spectrum Twente, Enschede, The Netherlands, b.beishuizen@mst.nl; Bart van de Gaauw, MD, PhD, Martiniziekenhuis, Groningen, The Netherlands, b.vandergaauw@mzh.nl; Roos Renckens, MD, PhD, Department of Internal Medicine, Northwest Clinics, Alkmaar, the Netherlands, r.renckens@nwz.nl; B. van den Bogaard, MD, PhD, ICU, OLVG, Amsterdam, The Netherlands, b.vandenbogaard@olvg.nl; Prof. Peter Pickkers, Department of Intensive Care Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands, peter.pickkers@radboudumc.nl; Pim van der Heiden, MD, PhD, Intensive Care, Reinier de Graaf Gasthuis, Delft, The Netherlands, pvdheiden@hotmail.com; Dennis Geutjes, Department of Information Technology, Slingeland Ziekenhuis, Doetinchem, The Netherlands, d.geutjes@slingeland.nl; Claudia (C.W.) van Gemeren, MD, Intensive Care, Spaarne Gasthuis, Haarlem en Hoofddorp, The Netherlands, c.van.gemeren@spaarnegasthuis.nl; Emma Rademaker, MD, MSc, Department of Intensive Care, UMC Utrecht, Utrecht, The Netherlands, E.Rademaker-2@umcutrecht.nl; Frits H.M. van Osch, PhD, Department of Clinical Epidemiology, VieCuri Medisch Centrum, Venlo, The Netherlands, fvosch@viecuri.nl; Johan Lutisan, MD, ICU, WZA, Assen, The Netherlands, johan.lutisan@wza.nl; Jacomar J.M. van Koesveld, MD, ICU, IJsselland Ziekenhuis, Capelle aan den IJssel, The Netherlands, jvkoesveld@ysl.nl; Bart P. Grady, MD, PhD, Department of Intensive Care, Ziekenhuisgroep Twente, Almelo, The Netherlands, b.grady@zgt.nl; and Martijn de Kruif, MD, PhD, Department of Pulmonology, Zuyderland MC, Heerlen, The Netherlands, m.dekruif@zuyderland.nl. From collaborating hospitals having signed the data sharing agreement: Bram Simons, MD, Intensive Care, Bravis Ziekenhuis, Bergen op Zoom en Roosendaal, The Netherlands, Br.simons@bravis.nl; A.A. Rijkeboer, MD, ICU, Flevoziekenhuis, Almere, The Netherlands, arijkeboer@flevoziekenhuis.nl; Annemieke Dijkstra, MD, Department of Intensive Care Medicine, Het Van Weel-Bethesda Ziekenhuis, Dirksland, The Netherlands, a.dijkstra@vanweelbethesdaziekenhuis.nl; Sesmu Arbous, MD, PhD, Intensivist, LUMC, Leiden, The Netherlands, m.s.arbous@lumc.nl; Marcel Aries, MD, PhD, MUMC+, University Maastricht, Maastricht, The Netherlands, marcel.aries@mumc.nl; Menno Beukema, MD, Department of Intensive Care, Streekziekenhuis Koningin Beatrix, Winterswijk, The Netherlands, m.beukema@skbwinterswijk.nl; Daniël Pretorius, MD, Department of Intensive Care Medicine, Hospital St Jansdal, Harderwijk, The Netherlands, DJH.Pretorius@stjansdal.nl; Rutger van Raalte, Department of Intensive Care, Tergooi hospital, Hilversum, The Netherlands, RvanRaalte@tergooi.nl; Martijn van Tellingen, MD, EDIC, Department of Intensive Care Medicine, afdeling Intensive Care, ziekenhuis Tjongerschans, Heerenveen, The Netherlands, martijn.van.tellingen@tjongerschans.nl; Niels C. Gritters van den Oever, MD, Intensive Care, Treant Zorggroep, Emmen, The Netherlands, n.gritters@treant.nl. From the Laboratory for Critical Care Computational Intelligence: Armand R.J. Girbes, MD, PhD, EDIC, Department of Intensive Care Medicine, Laboratory for Critical Care Computational Intelligence, Amsterdam Medical Data Science, Amsterdam UMC, Amsterdam, The Netherlands, arj.girbes@amsterdamumc.nl; Luca Roggeveen, MD, Department of Intensive Care Medicine, Laboratory for Critical Care Computational Intelligence, Amsterdam Medical Data Science, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands, l.roggeveen@amsterdamumc.nl; Dagmar M. Ouweneel, PhD, Department of Intensive Care Medicine, Laboratory for Critical Care Computational Intelligence, Amsterdam Medical Data Science, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands, d.m.ouweneel@amsterdamumc.nl; Ronald Driessen, Department of Intensive Care Medicine, Laboratory for Critical Care Computational Intelligence, Amsterdam Medical Data Science, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands, r.driessen@amsterdamumc.nl; Jan Peppink, Department of Intensive Care Medicine, Laboratory for Critical Care Computational Intelligence, Amsterdam Medical Data Science, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands, jan.peppink@amsterdamumc.nl; H.J. de Grooth, MD, PhD, Department of Intensive Care Medicine, Laboratory for Critical Care Computational Intelligence, Amsterdam Medical Data Science, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands, h.degrooth@amsterdamumc.nl; G.J. Zijlstra, MD, PhD, Department of Intensive Care Medicine, Laboratory for Critical Care Computational Intelligence, Amsterdam Medical Data Science, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands, g.j.zijlstra@amsterdamumc.nl; A.J. van Tienhoven, MD, Department of Intensive Care Medicine, Laboratory for Critical Care Computational Intelligence, Amsterdam Medical Data Science, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands, a.vantienhoven@amsterdamumc.nl; Evelien van der Heiden, MD, Department of Intensive Care Medicine, Amsterdam Medical Data Science, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands, e.vanderheiden@amsterdamumc.nl; Jan Jaap Spijkstra, MD, PhD, Department of Intensive Care Medicine, Amsterdam Medical Data Science, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands, jj.spijkstra@amsterdamumc.nl; Hans van der Spoel, MD, Department of Intensive Care Medicine, Amsterdam Medical Data Science, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands, ji.vanderspoel@amsterdamumc.nl; Angelique de Man, MD, PhD, Department of Intensive Care Medicine, Amsterdam Medical Data Science, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands, ame.deman@amsterdamumc.nl; Thomas Klausch, PhD, Department of Clinical Epidemiology, Laboratory for Critical Care Computational Intelligence, Amsterdam Medical Data Science, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands, t.klausch@amsterdamumc.nl; Heder J. de Vries, MD, Department of Intensive Care Medicine, Laboratory for Critical Care Computational Intelligence, Amsterdam Medical Data Science, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands, h.vries@amsterdamumc.nl; Mark Hoogendoorn, PhD, Quantitative Data Analytics Group, Department of Computer Science, Faculty of Science, VU University, Amsterdam, The Netherlands, m.hoogendoorn@vu.nl; Fuda van Diggelen, MSc, Quantitative Data Analytics Group, Department of Computer Sciences, Faculty of Science, VU University, Amsterdam, The Netherlands, fuda.van.diggelen@vu.nl; Ali el Hassouni, PhD, Quantitative Data Analytics Group, Department of Computer Sciences, Faculty of Science, VU University, Amsterdam, The Netherlands, a.el.hassouni@vu.nl; David Romero Guzman, PhD, Quantitative Data Analytics Group, Department of Computer Sciences, Faculty of Science, VU University, Amsterdam, The Netherlands, d.w.romeroguzman@vu.nl; Sandjai Bhulai, PhD, Analytics and Optimization Group, Department of Mathematics, Faculty of Science, Vrije Universiteit, Amsterdam, The Netherlands, s.bhulai@vu.nl. From Pacmed: Michele Tonutti, MRes, Pacmed, Amsterdam, The Netherlands, michele.tonutti@pacmed.nl; Mattia Fornasa, PhD, Pacmed, Amsterdam, The Netherlands, mattia.fornasa@pacmed.nl; Tomas Machado, Pacmed, Amsterdam, The Netherlands, tomas.machado@pacmed.nl; Adam Izdebski, Pacmed, Amsterdam, The Netherlands, adam.izdebski@pacmed.nl; Taco Houwert, MSc, Pacmed, Amsterdam, The Netherlands, taco.houwert@pacmed.nl; Hidde Hovenkamp, MSc, Pacmed, Amsterdam, The Netherlands, hidde@pacmed.nl; Roberto Noorduijn Londono, MSc, Pacmed, Amsterdam, The Netherlands, roberto.noorduijn@pacmed.nl; Davide Quintarelli, MSc, Pacmed, Amsterdam, The Netherlands, davide.quintarelli@pacmed.nl; Martijn G. Scholtemeijer, MD, Pacmed, Amsterdam, The Netherlands, martijn.scholtemeijer@pacmed.nl; Aletta A. de Beer, MSc, Pacmed, Amsterdam, The Netherlands, aletta.debeer@pacmed.nl; Giovanni Cinà, PhD, Pacmed, Amsterdam, The Netherlands, giovanni.cina@pacmed.nl; Willem E. Herter, BSc, Pacmed, Amsterdam, The Netherlands, willem@pacmed.nl; Michael de Neree tot Babberich, Pacmed, Amsterdam, The Netherlands, michael.deneree@pacmed.nl; Olivier Thijssens, MSc, Pacmed, Amsterdam, The Netherlands, olivier.thijssens@pacmed.nl; Lot Wagemakers, Pacmed, Amsterdam, The Netherlands, lot.wagemakers@pacmed.nl; Hilde G.A. van der Pol, Pacmed, Amsterdam, The Netherlands, hilde.vanderpol@pacmed.nl; Tom Hendriks, Pacmed, Amsterdam, The Netherlands, tom.hendriks@pacmed.nl; Julie Berend, Pacmed, Amsterdam, The Netherlands, julieberend1@gmail.com; Virginia Ceni Silva, Pacmed, Amsterdam, The Netherlands, vivicenisilva@gmail.com; Robert F.J. Kullberg, MD, Pacmed, Amsterdam, The Netherlands, bobkullberg@gmail.com. From RCCnet: Leo Heunks, MD, PhD, Department of Intensive Care Medicine, Amsterdam Medical Data Science, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands, l.heunks@amsterdamumc.nl; Nicole Juffermans, MD, PhD, ICU, OLVG, Amsterdam, The Netherlands, n.p.juffermans@amsterdamumc.nl; Arjen J.C. Slooter, MD, PhD, Department of Intensive Care Medicine, UMC Utrecht, Utrecht University, Utrecht, the Netherlands, a.slooter-3@umcutrecht.nl. From other collaborating partners:Martijn Beudel, MD, PhD, Department of Neurology, Amsterdam UMC, Universiteit van Amsterdam, Amsterdam, The Netherlands, m.beudel@amsterdamumc.nl; Nicolet F. de Keizer, PhD, Department of Clinical Informatics, Amsterdam UMC, Amsterdam, The Netherlands, n.f.keizer@amsterdamumc.nl. Funding Information: Authors DP and NB are supported by the grant #2017‐110 of the Strategic Focal Area “Personalized Health and Related Technologies (PHRT)” of the ETH Domain for the SPHN/PHRT Driver Project ‘Personalized Swiss Sepsis Study’. Other authors are funded by their respective institutions. Publisher Copyright: © 2021 The Authors. Acta Anaesthesiologica Scandinavica published by John Wiley & Sons Ltd on behalf of Acta Anaesthesiologica Scandinavica Foundation.
PY - 2022/1
Y1 - 2022/1
N2 - Background: The prediction of in-hospital mortality for ICU patients with COVID-19 is fundamental to treatment and resource allocation. The main purpose was to develop an easily implemented score for such prediction. Methods: This was an observational, multicenter, development, and validation study on a national critical care dataset of COVID-19 patients. A systematic literature review was performed to determine variables possibly important for COVID-19 mortality prediction. Using a logistic multivariable model with a LASSO penalty, we developed the Rapid Evaluation of Coronavirus Illness Severity (RECOILS) score and compared its performance against published scores. Results: Our development (validation) cohort consisted of 1480 (937) adult patients from 14 (11) Dutch ICUs admitted between March 2020 and April 2021. Median age was 65 (65) years, 31% (26%) died in hospital, 74% (72%) were males, average length of ICU stay was 7.83 (10.25) days and average length of hospital stay was 15.90 (19.92) days. Age, platelets, PaO2/FiO2 ratio, pH, blood urea nitrogen, temperature, PaCO2, Glasgow Coma Scale (GCS) score measured within +/−24 h of ICU admission were used to develop the score. The AUROC of RECOILS score was 0.75 (CI 0.71–0.78) which was higher than that of any previously reported predictive scores (0.68 [CI 0.64–0.71], 0.61 [CI 0.58–0.66], 0.67 [CI 0.63–0.70], 0.70 [CI 0.67–0.74] for ISARIC 4C Mortality Score, SOFA, SAPS-III, and age, respectively). Conclusions: Using a large dataset from multiple Dutch ICUs, we developed a predictive score for mortality of COVID-19 patients admitted to ICU, which outperformed other predictive scores reported so far.
AB - Background: The prediction of in-hospital mortality for ICU patients with COVID-19 is fundamental to treatment and resource allocation. The main purpose was to develop an easily implemented score for such prediction. Methods: This was an observational, multicenter, development, and validation study on a national critical care dataset of COVID-19 patients. A systematic literature review was performed to determine variables possibly important for COVID-19 mortality prediction. Using a logistic multivariable model with a LASSO penalty, we developed the Rapid Evaluation of Coronavirus Illness Severity (RECOILS) score and compared its performance against published scores. Results: Our development (validation) cohort consisted of 1480 (937) adult patients from 14 (11) Dutch ICUs admitted between March 2020 and April 2021. Median age was 65 (65) years, 31% (26%) died in hospital, 74% (72%) were males, average length of ICU stay was 7.83 (10.25) days and average length of hospital stay was 15.90 (19.92) days. Age, platelets, PaO2/FiO2 ratio, pH, blood urea nitrogen, temperature, PaCO2, Glasgow Coma Scale (GCS) score measured within +/−24 h of ICU admission were used to develop the score. The AUROC of RECOILS score was 0.75 (CI 0.71–0.78) which was higher than that of any previously reported predictive scores (0.68 [CI 0.64–0.71], 0.61 [CI 0.58–0.66], 0.67 [CI 0.63–0.70], 0.70 [CI 0.67–0.74] for ISARIC 4C Mortality Score, SOFA, SAPS-III, and age, respectively). Conclusions: Using a large dataset from multiple Dutch ICUs, we developed a predictive score for mortality of COVID-19 patients admitted to ICU, which outperformed other predictive scores reported so far.
KW - COVID-19
KW - corona virus
KW - intensive care
KW - mechanical ventilation
KW - respiratory failure
UR - http://www.scopus.com/inward/record.url?scp=85116967229&partnerID=8YFLogxK
U2 - https://doi.org/10.1111/aas.13991
DO - https://doi.org/10.1111/aas.13991
M3 - Article
C2 - 34622441
SN - 0001-5172
VL - 66
SP - 65
EP - 75
JO - Acta Anæsthesiologica Scandinavica
JF - Acta Anæsthesiologica Scandinavica
IS - 1
ER -