TY - JOUR
T1 - Rate of tension redevelopment is not modulated by sarcomere length in permeabilized human, murine, and porcine cardiomyocytes
AU - Édes, István Ferenc
AU - Czuriga, Dániel
AU - Csányi, Gábor
AU - Chłopicki, Stefan
AU - Recchia, Fabio A.
AU - Borbély, Attila
AU - Galajda, Zoltán
AU - Édes, István
AU - Van Der Velden, Jolanda
AU - Stienen, Ger J.M.
AU - Papp, Zoltán
PY - 2007/7/1
Y1 - 2007/7/1
N2 - The increase in Ca2+ sensitivity of isometric force development along with sarcomere length (SL) is considered as the basis of the Frank-Starling law of the heart, possibly involving the regulation of crossbridge turnover kinetics. Therefore, the Ca2+ dependencies of isometric force production and of the cross-bridge-sensitive rate constant of force redevelopment (ktr) were determined at different SLs (1.9 and 2.3 μm) in isolated human, murine, and porcine permeabilized cardiomyocytes. ktr was also determined in the presence of 10 mM inorganic phosphate (Pi), which interfered with the force-generating cross-bridge transitions. The increases in Ca2+ sensitivities of force with SL were very similar in human, murine, and porcine cardiomyocytes (ΔpCa50: ∼0.11). ktr was higher (P < 0.05) in mice than in humans or pigs at all Ca2+ concentrations ([Ca2+]) [maximum ktr (ktr,max) at a SL of 1.9 μm and pCa 4.75: 1.33 ± 0.11, 7.44 ± 0.15, and 1.02 ± 0.05 s-1, in humans, mice, and pigs, respectively] but ktr did not depend on SL in any species. Moreover, when the ktr values for each species were expressed relative to their respective maxima, similar Ca2+ dependencies were obtained. Ten millimolar Pi decreased force to ∼60-65% and left ΔpCa50 unaltered in all three species. Pi increased ktr,max by a factor of ∼1.6 in humans and pigs and by a factor of ∼3 in mice, independent of SL. In conclusion, species differences exert a major influence on ktr, but SL does not appear to modulate the cross-bridge turnover rates in human, murine, and porcine hearts.
AB - The increase in Ca2+ sensitivity of isometric force development along with sarcomere length (SL) is considered as the basis of the Frank-Starling law of the heart, possibly involving the regulation of crossbridge turnover kinetics. Therefore, the Ca2+ dependencies of isometric force production and of the cross-bridge-sensitive rate constant of force redevelopment (ktr) were determined at different SLs (1.9 and 2.3 μm) in isolated human, murine, and porcine permeabilized cardiomyocytes. ktr was also determined in the presence of 10 mM inorganic phosphate (Pi), which interfered with the force-generating cross-bridge transitions. The increases in Ca2+ sensitivities of force with SL were very similar in human, murine, and porcine cardiomyocytes (ΔpCa50: ∼0.11). ktr was higher (P < 0.05) in mice than in humans or pigs at all Ca2+ concentrations ([Ca2+]) [maximum ktr (ktr,max) at a SL of 1.9 μm and pCa 4.75: 1.33 ± 0.11, 7.44 ± 0.15, and 1.02 ± 0.05 s-1, in humans, mice, and pigs, respectively] but ktr did not depend on SL in any species. Moreover, when the ktr values for each species were expressed relative to their respective maxima, similar Ca2+ dependencies were obtained. Ten millimolar Pi decreased force to ∼60-65% and left ΔpCa50 unaltered in all three species. Pi increased ktr,max by a factor of ∼1.6 in humans and pigs and by a factor of ∼3 in mice, independent of SL. In conclusion, species differences exert a major influence on ktr, but SL does not appear to modulate the cross-bridge turnover rates in human, murine, and porcine hearts.
KW - Calcium
KW - Heart
KW - Mouse
KW - Myofilament length-dependent activation
KW - Pig
KW - Rate of tension redevelopment
KW - Skinned muscle
UR - http://www.scopus.com/inward/record.url?scp=34447642662&partnerID=8YFLogxK
U2 - https://doi.org/10.1152/ajpregu.00537.2006
DO - https://doi.org/10.1152/ajpregu.00537.2006
M3 - Article
C2 - 17110532
SN - 0363-6119
VL - 293
SP - R20-R29
JO - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
JF - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
IS - 1
ER -