TY - JOUR
T1 - Real-time 3D motion estimation from undersampled MRI using multi-resolution neural networks
AU - Terpstra, Maarten L.
AU - Maspero, Matteo
AU - Bruijnen, Tom
AU - Verhoeff, Joost J.C.
AU - Lagendijk, Jan J.W.
AU - van den Berg, Cornelis A.T.
N1 - Funding Information: This work is part of the research program HTSM with project number 15354, which is (partly) financed by the Netherlands Organisation for Scientific Research (NWO) and Philips Healthcare. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Quadro RTX 5000 GPU used for prototyping this research. Publisher Copyright: © 2021 The Authors. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine
PY - 2021/11
Y1 - 2021/11
N2 - Purpose: To enable real-time adaptive magnetic resonance imaging–guided radiotherapy (MRIgRT) by obtaining time-resolved three-dimensional (3D) deformation vector fields (DVFs) with high spatiotemporal resolution and low latency ((Formula presented.) ms). Theory and Methods: Respiratory-resolved (Formula presented.) -weighted 4D-MRI of 27 patients with lung cancer were acquired using a golden-angle radial stack-of-stars readout. A multiresolution convolutional neural network (CNN) called TEMPEST was trained on up to 32 (Formula presented.) retrospectively undersampled MRI of 17 patients, reconstructed with a nonuniform fast Fourier transform, to learn optical flow DVFs. TEMPEST was validated using 4D respiratory-resolved MRI, a digital phantom, and a physical motion phantom. The time-resolved motion estimation was evaluated in-vivo using two volunteer scans, acquired on a hybrid MR-scanner with integrated linear accelerator. Finally, we evaluated the model robustness on a publicly-available four-dimensional computed tomography (4D-CT) dataset. Results: TEMPEST produced accurate DVFs on respiratory-resolved MRI at 20-fold acceleration, with the average end-point-error (Formula presented.) mm, both on respiratory-sorted MRI and on a digital phantom. TEMPEST estimated accurate time-resolved DVFs on MRI of a motion phantom, with an error (Formula presented.) mm at 28 (Formula presented.) undersampling. On two volunteer scans, TEMPEST accurately estimated motion compared to the self-navigation signal using 50 spokes per dynamic (366 (Formula presented.) undersampling). At this undersampling factor, DVFs were estimated within 200 ms, including MRI acquisition. On fully sampled CT data, we achieved a target registration error of (Formula presented.) mm without retraining the model. Conclusion: A CNN trained on undersampled MRI produced accurate 3D DVFs with high spatiotemporal resolution for MRIgRT.
AB - Purpose: To enable real-time adaptive magnetic resonance imaging–guided radiotherapy (MRIgRT) by obtaining time-resolved three-dimensional (3D) deformation vector fields (DVFs) with high spatiotemporal resolution and low latency ((Formula presented.) ms). Theory and Methods: Respiratory-resolved (Formula presented.) -weighted 4D-MRI of 27 patients with lung cancer were acquired using a golden-angle radial stack-of-stars readout. A multiresolution convolutional neural network (CNN) called TEMPEST was trained on up to 32 (Formula presented.) retrospectively undersampled MRI of 17 patients, reconstructed with a nonuniform fast Fourier transform, to learn optical flow DVFs. TEMPEST was validated using 4D respiratory-resolved MRI, a digital phantom, and a physical motion phantom. The time-resolved motion estimation was evaluated in-vivo using two volunteer scans, acquired on a hybrid MR-scanner with integrated linear accelerator. Finally, we evaluated the model robustness on a publicly-available four-dimensional computed tomography (4D-CT) dataset. Results: TEMPEST produced accurate DVFs on respiratory-resolved MRI at 20-fold acceleration, with the average end-point-error (Formula presented.) mm, both on respiratory-sorted MRI and on a digital phantom. TEMPEST estimated accurate time-resolved DVFs on MRI of a motion phantom, with an error (Formula presented.) mm at 28 (Formula presented.) undersampling. On two volunteer scans, TEMPEST accurately estimated motion compared to the self-navigation signal using 50 spokes per dynamic (366 (Formula presented.) undersampling). At this undersampling factor, DVFs were estimated within 200 ms, including MRI acquisition. On fully sampled CT data, we achieved a target registration error of (Formula presented.) mm without retraining the model. Conclusion: A CNN trained on undersampled MRI produced accurate 3D DVFs with high spatiotemporal resolution for MRIgRT.
KW - MR-Linac
KW - MRI
KW - MRI-guided radiotherapy
KW - adaptive radiotherapy
KW - artificial intelligence
KW - deep learning
KW - motion estimation
KW - radiotherapy
KW - registration
UR - http://www.scopus.com/inward/record.url?scp=85118154833&partnerID=8YFLogxK
U2 - https://doi.org/10.1002/mp.15217
DO - https://doi.org/10.1002/mp.15217
M3 - Article
SN - 0094-2405
VL - 48
SP - 6597
EP - 6613
JO - Medical physics
JF - Medical physics
IS - 11
ER -