Reduced synaptic depression in human neurons carrying homozygous disease-causing STXBP1 variant L446F

Miriam Öttl, Ruud F. Toonen, Matthijs Verhage

    Research output: Contribution to journalArticleAcademicpeer-review

    Abstract

    MUNC18-1 is an essential protein of the regulated secretion machinery. De novo, heterozygous mutations in STXBP1, the human gene encoding this protein, lead to a severe neurodevelopmental disorder. Here, we describe the electrophysiological characteristics of a unique case of STXBP1-related disorder caused by a homozygous mutation (L446F). We engineered this mutation in induced pluripotent stem cells from a healthy donor (STXBP1LF/LF) to establish isogenic cell models. We performed morphological and electrophysiological analyses on single neurons grown on glial micro-islands. Human STXBP1LF/LF neurons displayed normal morphology and normal basal synaptic transmission but increased paired-pulse ratios and charge released, and reduced synaptic depression compared to control neurons. Immunostainings revealed normal expression levels but impaired recognition by a mutation-specific MUNC18-1 antibody. The electrophysiological gain-of-function phenotype is in line with earlier overexpression studies in Stxbp1 null mouse neurons, with some potentially human-specific features. Therefore, the present study highlights important differences between mouse and human neurons critical for the translatability of pre-clinical studies.

    Original languageEnglish
    Pages (from-to)991-1000
    Number of pages10
    JournalHuman Molecular Genetics
    Volume33
    Issue number11
    Early online date15 Mar 2024
    DOIs
    Publication statusPublished - 1 Jun 2024

    Keywords

    • CRISPR
    • STXBP1
    • electrophysiology
    • epilepsy
    • induced pluripotent stem cells

    Cite this