TY - JOUR
T1 - ST-Segment Elevation and Fractionated Electrograms in Brugada Syndrome Patients Arise From the Same Structurally Abnormal Subepicardial RVOT Area but Have a Different Mechanism
AU - ten Sande, Judith N.
AU - Coronel, Ruben
AU - Conrath, Chantal E.
AU - Driessen, Antoine H. G.
AU - de Groot, Joris R.
AU - Tan, Hanno L.
AU - Nademanee, Koonlawee
AU - Wilde, Arthur A. M.
AU - de Bakker, Jacques M. T.
AU - van Dessel, Pascal F. H. M.
PY - 2015
Y1 - 2015
N2 - Brugada syndrome (BrS) is characterized by a typical ECG pattern. We aimed to determine the pathophysiologic basis of the ST-segment in the BrS-ECG with data from various epicardial and endocardial right ventricular activation mapping procedures in 6 BrS patients and in 5 non-BrS controls. In 7 patients (2 BrS and 5 controls) with atrial fibrillation, an epicardial 8×6 electrode grid (interelectrode distance 1 mm) was placed epicardially on the right ventricular outflow tract (RVOT) before video-assisted thoracoscopic surgical pulmonary vein isolation. In 2 other BrS patients, endocardial, epicardial RV (CARTO), and body surface mapping was performed. In 2 additional BrS patients, we performed decremental preexcitation of the RVOT before endocardial RV mapping. During video-assisted thoracoscopic surgical pulmonary vein isolation and CARTO mapping, BrS patients (n=4) showed greater activation delay and more fractionated electrograms in the RVOT region than controls. Ajmaline administration increased the region with fractionated electrograms, as well as ST-segment elevation. Preexcitation of the RVOT (n=2) resulted in ECGs that supported the current-to-load mismatch hypothesis for ST-segment elevation. Body surface mapping showed that the area with ST-segment elevation anatomically correlated with the area of fractionated electrograms and activation delay at the RVOT epicardium. ST-segment elevation and epicardial fractionation/conduction delay in BrS patients are most likely related to the same structural subepicardial abnormalities, but the mechanism is different. ST-segment elevation may be caused by current-to-load mismatch, whereas fractionated electrograms and conduction delay are expected to be caused by discontinuous conduction in the same area with abnormal myocardium
AB - Brugada syndrome (BrS) is characterized by a typical ECG pattern. We aimed to determine the pathophysiologic basis of the ST-segment in the BrS-ECG with data from various epicardial and endocardial right ventricular activation mapping procedures in 6 BrS patients and in 5 non-BrS controls. In 7 patients (2 BrS and 5 controls) with atrial fibrillation, an epicardial 8×6 electrode grid (interelectrode distance 1 mm) was placed epicardially on the right ventricular outflow tract (RVOT) before video-assisted thoracoscopic surgical pulmonary vein isolation. In 2 other BrS patients, endocardial, epicardial RV (CARTO), and body surface mapping was performed. In 2 additional BrS patients, we performed decremental preexcitation of the RVOT before endocardial RV mapping. During video-assisted thoracoscopic surgical pulmonary vein isolation and CARTO mapping, BrS patients (n=4) showed greater activation delay and more fractionated electrograms in the RVOT region than controls. Ajmaline administration increased the region with fractionated electrograms, as well as ST-segment elevation. Preexcitation of the RVOT (n=2) resulted in ECGs that supported the current-to-load mismatch hypothesis for ST-segment elevation. Body surface mapping showed that the area with ST-segment elevation anatomically correlated with the area of fractionated electrograms and activation delay at the RVOT epicardium. ST-segment elevation and epicardial fractionation/conduction delay in BrS patients are most likely related to the same structural subepicardial abnormalities, but the mechanism is different. ST-segment elevation may be caused by current-to-load mismatch, whereas fractionated electrograms and conduction delay are expected to be caused by discontinuous conduction in the same area with abnormal myocardium
U2 - https://doi.org/10.1161/CIRCEP.115.003366
DO - https://doi.org/10.1161/CIRCEP.115.003366
M3 - Article
C2 - 26480928
SN - 1941-3149
VL - 8
SP - 1382
EP - 1392
JO - Circulation. Arrhythmia and Electrophysiology
JF - Circulation. Arrhythmia and Electrophysiology
IS - 6
ER -