TY - JOUR
T1 - The impact of data errors on the outcome of randomized clinical trials
AU - Buyse, Marc
AU - Squifflet, Pierre
AU - Coart, Elisabeth
AU - Quinaux, Emmanuel
AU - Punt, Cornelis J. A.
AU - Saad, Everardo D.
PY - 2017
Y1 - 2017
N2 - Background/aims: Considerable human and financial resources are typically spent to ensure that data collected for clinical trials are free from errors. We investigated the impact of random and systematic errors on the outcome of randomized clinical trials. Methods: We used individual patient data relating to response endpoints of interest in two published randomized clinical trials, one in ophthalmology and one in oncology. These randomized clinical trials enrolled 1186 patients with age-related macular degeneration and 736 patients with metastatic colorectal cancer. The ophthalmology trial tested the benefit of pegaptanib for the treatment of age-related macular degeneration and identified a statistically significant treatment benefit, whereas the oncology trial assessed the benefit of adding cetuximab to a regimen of capecitabine, oxaliplatin, and bevacizumab for the treatment of metastatic colorectal cancer and failed to identify a statistically significant treatment difference. We simulated trial results by adding errors that were independent of the treatment group (random errors) and errors that favored one of the treatment groups (systematic errors). We added such errors to the data for the response endpoint of interest for increasing proportions of randomly selected patients. Results: Random errors added to up to 50% of the cases produced only slightly inflated variance in the estimated treatment effect of both trials, with no qualitative change in the p-value. In contrast, systematic errors produced bias even for very small proportions of patients with added errors. Conclusion: A substantial amount of random errors is required before appreciable effects on the outcome of randomized clinical trials are noted. In contrast, even a small amount of systematic errors can severely bias the estimated treatment effects. Therefore, resources devoted to randomized clinical trials should be spent primarily on minimizing sources of systematic errors which can bias the analyses, rather than on random errors which result only in a small loss in power
AB - Background/aims: Considerable human and financial resources are typically spent to ensure that data collected for clinical trials are free from errors. We investigated the impact of random and systematic errors on the outcome of randomized clinical trials. Methods: We used individual patient data relating to response endpoints of interest in two published randomized clinical trials, one in ophthalmology and one in oncology. These randomized clinical trials enrolled 1186 patients with age-related macular degeneration and 736 patients with metastatic colorectal cancer. The ophthalmology trial tested the benefit of pegaptanib for the treatment of age-related macular degeneration and identified a statistically significant treatment benefit, whereas the oncology trial assessed the benefit of adding cetuximab to a regimen of capecitabine, oxaliplatin, and bevacizumab for the treatment of metastatic colorectal cancer and failed to identify a statistically significant treatment difference. We simulated trial results by adding errors that were independent of the treatment group (random errors) and errors that favored one of the treatment groups (systematic errors). We added such errors to the data for the response endpoint of interest for increasing proportions of randomly selected patients. Results: Random errors added to up to 50% of the cases produced only slightly inflated variance in the estimated treatment effect of both trials, with no qualitative change in the p-value. In contrast, systematic errors produced bias even for very small proportions of patients with added errors. Conclusion: A substantial amount of random errors is required before appreciable effects on the outcome of randomized clinical trials are noted. In contrast, even a small amount of systematic errors can severely bias the estimated treatment effects. Therefore, resources devoted to randomized clinical trials should be spent primarily on minimizing sources of systematic errors which can bias the analyses, rather than on random errors which result only in a small loss in power
U2 - https://doi.org/10.1177/1740774517716158
DO - https://doi.org/10.1177/1740774517716158
M3 - Article
C2 - 28641461
SN - 1740-7745
VL - 14
SP - 499
EP - 506
JO - Clinical trials (London, England)
JF - Clinical trials (London, England)
IS - 5
ER -