The N-Terminal DH-PH Domain of Trio Induces Cell Spreading and Migration by Regulating Lamellipodia Dynamics in a Rac1-Dependent Fashion

Jos van Rijssel, Mark Hoogenboezem, Lynn Wester, Peter L. Hordijk

Research output: Contribution to journalArticleAcademicpeer-review

38 Citations (Scopus)


The guanine-nucleotide exchange factor Trio encodes two DH-PH domains that catalyze nucleotide exchange on Rac1, RhoG and RhoA. The N-terminal DH-PH domain is known to activate Rac1 and RhoG, whereas the C-terminal DH-PH domain can activate RhoA. The current study shows that the N-terminal DH-PH domain, upon expression in HeLa cells, activates Rac1 and RhoG independently from each other. In addition, we show that the flanking SH3 domain binds to the proline-rich region of the C-terminus of Rac1, but not of RhoG. However, this SH3 domain is not required for Rac1 or RhoG GDP-GTP exchange. Rescue experiments in Trio-shRNA-expressing cells showed that the N-terminal DH-PH domain of Trio, but not the C-terminal DH-PH domain, restored fibronectin-mediated cell spreading and migration defects that are observed in Trio-silenced cells. Kymograph analysis revealed that the N-terminal DH-PH domain, independent of its SH3 domain, controls the dynamics of lamellipodia. Using siRNA against Rac1 or RhoG, we found that Trio-D1-induced lamellipodia formation required Rac1 but not RhoG expression. Together, we conclude that the GEF Trio is responsible for lamellipodia formation through its N-terminal DH-PH domain in a Rac1-dependent manner during fibronectin-mediated spreading and migration
Original languageEnglish
Article numbere29912
Pages (from-to)e29912
Issue number1
Publication statusPublished - 6 Jan 2012

Cite this