The RHOSSA campaign: Multi-resolution monitoring of the seasonal evolution of the structure and mechanical stability of an alpine snowpack

Neige Calonne, Bettina Richter, Henning Löwe, Cecilia Cetti, Judith Ter Schure, Alec Van Herwijnen, Charles Fierz, Matthias Jaggi, Martin Schneebeli

Research output: Contribution to journalArticleAcademicpeer-review

21 Citations (Scopus)

Abstract

The necessity of characterizing snow through objective, physically motivated parameters has led to new model formulations and new measurement techniques. Consequently, essential structural parameters such as density and specific surface area (for basic characterization) or mechanical parameters such as the critical crack length (for avalanche stability characterization) gradually replace the semiempirical indices acquired from traditional stratigraphy. These advances come along with new demands and potentials for validation. To this end, we conducted the RHOSSA field campaign, in reference to density (span classCombining double low line"inline-formula"iρ/i/span) and specific surface area (SSA), at the Weissfluhjoch research site in the Swiss Alps to provide a multi-instrument, multi-resolution dataset of density, SSA and critical crack length over the complete winter season of 2015-2016. In this paper, we present the design of the campaign and a basic analysis of the measurements alongside predictions from the model SNOWPACK. To bridge between traditional and new methods, the campaign comprises traditional profiles, density cutter, IceCube, SnowMicroPen (SMP), micro-computed-tomography, propagation saw tests and compression tests. To bridge between different temporal resolutions, the traditional weekly to biweekly (every 2 weeks, used in this sense throughout the paper) snow pits were complemented by daily SMP measurements. From the latter, we derived a recalibration of the statistical retrieval of density and SSA for SMP version 4 that yields an unprecedented spatiotemporal picture of the seasonal evolution of density and SSA in a snowpack. Finally, we provide an intercomparison of measured and modeled estimates of density and SSA for four characteristic layers over the entire season to demonstrate the potential of high-temporal-resolution monitoring for snowpack model validation.

Original languageEnglish
Pages (from-to)1829-1848
Number of pages20
JournalCryosphere
Volume14
Issue number6
DOIs
Publication statusPublished - 9 Jun 2020

Cite this