The Role of Brain-Derived Neurotrophic Factor (BDNF) in the Relation between Physical Activity and Executive Functioning in Children

Julie Latomme, Patrick Calders, Hilde Van Waelvelde, Tineke Mariën, Marieke de Craemer

Research output: Contribution to journalArticleAcademicpeer-review

3 Citations (Scopus)

Abstract

BackgroundPhysical activity (PA) can improve children’s executive functioning (EF), which might be caused by increased levels of brain-derived neurotrophic factor (BDNF). This study investigated whether acute and/or chronic PA leads to increased BDNF levels and enhanced EF in children. Methods: In total, 47 children (mean age 9.69 ± 0.60; 46.8% boys) participated. Children performed a maximal exercise test to measure acute PA. Before and after, BDNF was collected and EF was measured. Chronic PA was proxy-reported. Repeated Measures ANOVAs were performed to study the effect of acute PA on BDNF and EF. Mediation analyses were performed to investigate the mediation effect of BDNF on the association between chronic PA and BDNF. Results: A borderline significant effect of acute PA on BDNF was found (F = 3.32, p = 0.075) with an increase in BDNF (+29.58 pg/mL) after acute PA. A significant effect was found for performance on inhibition tasks (Flanker (accuracy +5.67%, p = 0.034) and Go/No-Go (+0.15%, p = 0.022)). No effect of acute PA was found on the EF outcomes. No significant correlation between chronic PA and EFs nor BDNF was found. Conclusions: Acute PA might increase BDNF and improve some EFs (i.e., inhibition) in children. Chronic PA was not associated with EF nor BDNF. Trial Registration Number: NCT02503579.
Original languageEnglish
Article number596
JournalChildren
Volume9
Issue number5
DOIs
Publication statusPublished - 1 May 2022

Keywords

  • brain-derived neurotrophic factor
  • children
  • executive functioning
  • exercise
  • physical activity

Cite this