Abstract
Anionic liposomal formulations have previously shown to have intrinsic tolerogenic capacity and these properties have been related to the rigidity of the particles. The combination of highly rigid anionic liposomes to deliver tolerogenic adjuvants and antigen peptides has potential applications for the treatment of autoimmune and inflammatory diseases. However, the preparation of these highly rigid anionic liposomes using traditional methods such as lipid film hydration presents problems in terms of scalability and loading efficiency of some costly tolerogenic adjuvants like 1-α,25-dihydroxyvitaminD3. Here we propose the use of an off-the-shelf staggered herringbone micromixer for the preparation of these formulations and performed a systematic study on the effect of temperature and flow conditions on the size and polydispersity index of the formulations. Furthermore, we show that the system allows for the encapsulation of a wide variety of peptides and significantly higher loading efficiency of 1-α,25-dihydroxyvitaminD3 compared to the traditional lipid film hydration method, without compromising their non-inflammatory interaction with dendritic cells. Therefore, the microfluidics method presented here is a valuable tool for the preparation of highly rigid tolerogenic liposomes in a fast, size-tuneable and scalable manner.
Original language | English |
---|---|
Pages (from-to) | 1050-1057 |
Number of pages | 8 |
Journal | Journal of Pharmaceutical Sciences |
Volume | 111 |
Issue number | 4 |
Early online date | 2022 |
DOIs | |
Publication status | Published - Apr 2022 |
Keywords
- Herringbone micromixer
- Liposomes
- Microfluidics
- Rigidity
- Tolerance
- Vitamin D3