Three-dimensional organization of dendrites and local axon collaterals of shell and core medium-sized spiny projection neurons of the rat nucleus accumbens

Yvette van Dongen, Philippe Mailly, Anne-Marie Thierry, Henk Groenewegen, Jean-Michel Deniau

Research output: Contribution to journalArticleAcademicpeer-review

21 Citations (Scopus)


Medium-sized spiny projection neurons (MSN) in the head of the primate caudate nucleus are thought to have preferred dendritic orientations that tend to parallel the orientations of the striosomes. Moreover, recurrent axon collaterals of MSN in the rat dorsal striatum have been categorized into two types, i.e., restricted and widespread. The nucleus accumbens (Acb) has a highly complex compartmental organization, and the spatial organization of dendritic and axonal arbors of MSN has not yet been systematically studied. In this study, using singlecell juxtacellular labeling with neurobiotin as well as anterograde neuroanatomical tracing with biotinylated dextran amine, we investigated the three-dimensional (3D) organization of dendrites and axons of MSN of the rat Acb in relation to subregional (shell-core) and compartmental (patch-matrix) boundaries. Our results show that dendritic arbors of MSN in both the Acb shell and core subregions are preferentially oriented, i.e., they are flattened in at least one of the 3D-planes. The preferred orientations are influenced by shell-core and patch-matrix boundaries, suggesting parallel and independent processing of information. Dendritic orientations of MSN of the Acb core are more heterogeneous than those of the shell and the dorsal striatum, suggesting a more complex distribution of striatal inputs within the core. Although dendrites respect the shellcore and patch-matrix boundaries, recurrent axon collaterals may cross these boundaries. Finally, different degrees of overlap between dendritic and axonal arborizations of individual MSN were identified, suggesting various possibilities of lateral inhibitory interactions within and between, functionally distinct territories of the Acb.
Original languageEnglish
Pages (from-to)129-147
JournalBrain Structure and Function
Issue number1-2
Publication statusPublished - 2008

Cite this