TY - JOUR
T1 - Trajectories of clinical characteristics, complications and treatment choices in data-driven subgroups of type 2 diabetes
AU - Li, Xinyu
AU - Donnelly, Louise A.
AU - Slieker, Roderick C.
AU - Beulens, Joline W. J.
AU - ‘t Hart, Leen M.
AU - Elders, Petra J. M.
AU - Pearson, Ewan R.
AU - van Giessen, Anoukh
AU - Leal, Jose
AU - Feenstra, Talitha
N1 - Publisher Copyright: © The Author(s) 2024.
PY - 2024
Y1 - 2024
N2 - Aims/hypothesis: This study aimed to explore the added value of subgroups that categorise individuals with type 2 diabetes by k-means clustering for two primary care registries (the Netherlands and Scotland), inspired by Ahlqvist’s novel diabetes subgroups and previously analysed by Slieker et al. Methods: We used two Dutch and Scottish diabetes cohorts (N=3054 and 6145; median follow-up=11.2 and 12.3 years, respectively) and defined five subgroups by k-means clustering with age at baseline, BMI, HbA1c, HDL-cholesterol and C-peptide. We investigated differences between subgroups by trajectories of risk factor values (random intercept models), time to diabetes-related complications (logrank tests and Cox models) and medication patterns (multinomial logistic models). We also compared directly using the clustering indicators as predictors of progression vs the k-means discrete subgroups. Cluster consistency over follow-up was assessed. Results: Subgroups’ risk factors were significantly different, and these differences remained generally consistent over follow-up. Among all subgroups, individuals with severe insulin resistance faced a significantly higher risk of myocardial infarction both before (HR 1.65; 95% CI 1.40, 1.94) and after adjusting for age effect (HR 1.72; 95% CI 1.46, 2.02) compared with mild diabetes with high HDL-cholesterol. Individuals with severe insulin-deficient diabetes were most intensively treated, with more than 25% prescribed insulin at 10 years of diagnosis. For severe insulin-deficient diabetes relative to mild diabetes, the relative risks for using insulin relative to no common treatment would be expected to increase by a factor of 3.07 (95% CI 2.73, 3.44), holding other factors constant. Clustering indicators were better predictors of progression variation relative to subgroups, but prediction accuracy may improve after combining both. Clusters were consistent over 8 years with an accuracy ranging from 59% to 72%. Conclusions/interpretation: Data-driven subgroup allocations were generally consistent over follow-up and captured significant differences in risk factor trajectories, medication patterns and complication risks. Subgroups serve better as a complement rather than as a basis for compressing clustering indicators. Graphical Abstract: (Figure presented.)
AB - Aims/hypothesis: This study aimed to explore the added value of subgroups that categorise individuals with type 2 diabetes by k-means clustering for two primary care registries (the Netherlands and Scotland), inspired by Ahlqvist’s novel diabetes subgroups and previously analysed by Slieker et al. Methods: We used two Dutch and Scottish diabetes cohorts (N=3054 and 6145; median follow-up=11.2 and 12.3 years, respectively) and defined five subgroups by k-means clustering with age at baseline, BMI, HbA1c, HDL-cholesterol and C-peptide. We investigated differences between subgroups by trajectories of risk factor values (random intercept models), time to diabetes-related complications (logrank tests and Cox models) and medication patterns (multinomial logistic models). We also compared directly using the clustering indicators as predictors of progression vs the k-means discrete subgroups. Cluster consistency over follow-up was assessed. Results: Subgroups’ risk factors were significantly different, and these differences remained generally consistent over follow-up. Among all subgroups, individuals with severe insulin resistance faced a significantly higher risk of myocardial infarction both before (HR 1.65; 95% CI 1.40, 1.94) and after adjusting for age effect (HR 1.72; 95% CI 1.46, 2.02) compared with mild diabetes with high HDL-cholesterol. Individuals with severe insulin-deficient diabetes were most intensively treated, with more than 25% prescribed insulin at 10 years of diagnosis. For severe insulin-deficient diabetes relative to mild diabetes, the relative risks for using insulin relative to no common treatment would be expected to increase by a factor of 3.07 (95% CI 2.73, 3.44), holding other factors constant. Clustering indicators were better predictors of progression variation relative to subgroups, but prediction accuracy may improve after combining both. Clusters were consistent over 8 years with an accuracy ranging from 59% to 72%. Conclusions/interpretation: Data-driven subgroup allocations were generally consistent over follow-up and captured significant differences in risk factor trajectories, medication patterns and complication risks. Subgroups serve better as a complement rather than as a basis for compressing clustering indicators. Graphical Abstract: (Figure presented.)
KW - Data-driven subgroups
KW - Longitudinal analysis
KW - Real-world data
KW - Routine care
KW - Stratification of diabetes
UR - http://www.scopus.com/inward/record.url?scp=85190537130&partnerID=8YFLogxK
U2 - 10.1007/s00125-024-06147-y
DO - 10.1007/s00125-024-06147-y
M3 - Article
C2 - 38625583
SN - 0012-186X
VL - 67
SP - 1343
EP - 1355
JO - Diabetologia
JF - Diabetologia
IS - 7
ER -