TY - JOUR
T1 - Treatment of Creatine Transporter (SLC6A8) Deficiency With Oral S-Adenosyl Methionine as Adjunct to L-arginine, Glycine, and Creatine Supplements
AU - Jaggumantri, Sravan
AU - Dunbar, Mary
AU - Edgar, Vanessa
AU - Mignone, Cristina
AU - Newlove, Theresa
AU - Elango, Rajavel
AU - Collet, Jean Paul
AU - Sargent, Michael
AU - Stockler-Ipsiroglu, Sylvia
AU - van Karnebeek, Clara D. M.
PY - 2015
Y1 - 2015
N2 - BACKGROUND: Creatine transporter (SLC6A8) deficiency is an X-linked inborn error of metabolism characterized by cerebral creatine deficiency, behavioral problems, seizures, hypotonia, and intellectual developmental disability. A third of patients are amenable to treatment with high-dose oral creatine, glycine, and L-arginine supplementation. METHODS: Given the limited treatment response, we initiated an open-label observational study to evaluate the effect of adjunct S-adenosyl methionine to further enhance intracerebral creatine synthesis. RESULTS: Significant and reproducible issues with sleep and behavior were noted in both male patients on a dose of 50/mg/kg. One of the two patients stopped S-adenosyl methionine and did not come for any follow-up. A safe and tolerable dose (17 mg/kg/day) was identified in the other patient On magnetic resonance spectroscopy, this 8-year-old male did not show an increase in intracerebral creatine. However, significant improvement in speech/language skills, muscle mass were observed as well as in personal outcomes as defined by the family in activities related to communication and decision making. DISCUSSION: Further research is needed to assess the potential of S-adenosyl methionine as an adjunctive therapy for creatine transporter deficiency patients and to define the optimal dose. Our study also illustrates the importance of pathophysiology-based treatment, individualized outcome assessment, and patient/family participation in rare diseases research
AB - BACKGROUND: Creatine transporter (SLC6A8) deficiency is an X-linked inborn error of metabolism characterized by cerebral creatine deficiency, behavioral problems, seizures, hypotonia, and intellectual developmental disability. A third of patients are amenable to treatment with high-dose oral creatine, glycine, and L-arginine supplementation. METHODS: Given the limited treatment response, we initiated an open-label observational study to evaluate the effect of adjunct S-adenosyl methionine to further enhance intracerebral creatine synthesis. RESULTS: Significant and reproducible issues with sleep and behavior were noted in both male patients on a dose of 50/mg/kg. One of the two patients stopped S-adenosyl methionine and did not come for any follow-up. A safe and tolerable dose (17 mg/kg/day) was identified in the other patient On magnetic resonance spectroscopy, this 8-year-old male did not show an increase in intracerebral creatine. However, significant improvement in speech/language skills, muscle mass were observed as well as in personal outcomes as defined by the family in activities related to communication and decision making. DISCUSSION: Further research is needed to assess the potential of S-adenosyl methionine as an adjunctive therapy for creatine transporter deficiency patients and to define the optimal dose. Our study also illustrates the importance of pathophysiology-based treatment, individualized outcome assessment, and patient/family participation in rare diseases research
U2 - https://doi.org/10.1016/j.pediatrneurol.2015.05.006
DO - https://doi.org/10.1016/j.pediatrneurol.2015.05.006
M3 - Article
C2 - 26205312
SN - 0887-8994
VL - 53
SP - 360
EP - 363
JO - Pediatric neurology
JF - Pediatric neurology
IS - 4
ER -